CHAMP: Conformalized 3D Human Multi-Hypothesis Pose Estimators
- URL: http://arxiv.org/abs/2407.06141v1
- Date: Mon, 27 May 2024 02:42:38 GMT
- Title: CHAMP: Conformalized 3D Human Multi-Hypothesis Pose Estimators
- Authors: Harry Zhang, Luca Carlone,
- Abstract summary: CHAMP is a novel method for learning sequence-to-sequence, multi-hypothesis 3D human poses from 2D keypoints.
Our results indicate that using a simple mean aggregation on the conformal prediction-filtered hypotheses set yields competitive results.
- Score: 20.476154502171696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce CHAMP, a novel method for learning sequence-to-sequence, multi-hypothesis 3D human poses from 2D keypoints by leveraging a conditional distribution with a diffusion model. To predict a single output 3D pose sequence, we generate and aggregate multiple 3D pose hypotheses. For better aggregation results, we develop a method to score these hypotheses during training, effectively integrating conformal prediction into the learning process. This process results in a differentiable conformal predictor that is trained end2end with the 3D pose estimator. Post-training, the learned scoring model is used as the conformity score, and the 3D pose estimator is combined with a conformal predictor to select the most accurate hypotheses for downstream aggregation. Our results indicate that using a simple mean aggregation on the conformal prediction-filtered hypotheses set yields competitive results. When integrated with more sophisticated aggregation techniques, our method achieves state-of-the-art performance across various metrics and datasets while inheriting the probabilistic guarantees of conformal prediction.
Related papers
- UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - Diffusion-based Pose Refinement and Muti-hypothesis Generation for 3D
Human Pose Estimaiton [27.708016152889787]
Previous probabilistic models for 3D Human Pose Estimation (3DHPE) aimed to enhance pose accuracy by generating multiple hypotheses.
Most of the hypotheses generated deviate substantially from the true pose.
Compared to deterministic models, the excessive uncertainty in probabilistic models leads to weaker performance in single-hypothesis prediction.
We propose a diffusion-based refinement framework called DRPose, which refines the output of deterministic models by reverse diffusion.
arXiv Detail & Related papers (2024-01-10T04:07:50Z) - Exploiting Diffusion Prior for Generalizable Dense Prediction [85.4563592053464]
Recent advanced Text-to-Image (T2I) diffusion models are sometimes too imaginative for existing off-the-shelf dense predictors to estimate.
We introduce DMP, a pipeline utilizing pre-trained T2I models as a prior for dense prediction tasks.
Despite limited-domain training data, the approach yields faithful estimations for arbitrary images, surpassing existing state-of-the-art algorithms.
arXiv Detail & Related papers (2023-11-30T18:59:44Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - HuManiFlow: Ancestor-Conditioned Normalising Flows on SO(3) Manifolds
for Human Pose and Shape Distribution Estimation [27.14060158187953]
Recent approaches predict a probability distribution over plausible 3D pose and shape parameters conditioned on the image.
We show that these approaches exhibit a trade-off between three key properties.
Our method, HuManiFlow, predicts simultaneously accurate, consistent and diverse distributions.
arXiv Detail & Related papers (2023-05-11T16:49:19Z) - A generic diffusion-based approach for 3D human pose prediction in the
wild [68.00961210467479]
3D human pose forecasting, i.e., predicting a sequence of future human 3D poses given a sequence of past observed ones, is a challenging-temporal task.
We provide a unified formulation in which incomplete elements (no matter in the prediction or observation) are treated as noise and propose a conditional diffusion model that denoises them and forecasts plausible poses.
We investigate our findings on four standard datasets and obtain significant improvements over the state-of-the-art.
arXiv Detail & Related papers (2022-10-11T17:59:54Z) - The Best of Both Worlds: Combining Model-based and Nonparametric
Approaches for 3D Human Body Estimation [20.797162096899154]
We propose a framework for estimating model parameters from global image features.
A dense map prediction module explicitly establishes the dense UV correspondence between the image evidence and each part of the body model.
In inverse kinematics module refines the key point prediction and generates a posed template mesh.
A UV inpainting module relies on the corresponding feature, prediction and the posed template, and completes the predictions of occluded body shape.
arXiv Detail & Related papers (2022-05-01T16:39:09Z) - PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and
Hallucination under Self-supervision [102.48681650013698]
Existing self-supervised 3D human pose estimation schemes have largely relied on weak supervisions to guide the learning.
We propose a novel self-supervised approach that allows us to explicitly generate 2D-3D pose pairs for augmenting supervision.
This is made possible via introducing a reinforcement-learning-based imitator, which is learned jointly with a pose estimator alongside a pose hallucinator.
arXiv Detail & Related papers (2022-03-29T14:45:53Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - Distribution-Aware Single-Stage Models for Multi-Person 3D Pose
Estimation [29.430404703883084]
We present a novel Distribution-Aware Single-stage (DAS) model for tackling the challenging multi-person 3D pose estimation problem.
The proposed DAS model simultaneously localizes person positions and their corresponding body joints in the 3D camera space in a one-pass manner.
Comprehensive experiments on benchmarks CMU Panoptic and MuPoTS-3D demonstrate the superior efficiency of the proposed DAS model.
arXiv Detail & Related papers (2022-03-15T07:30:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.