CUPS: Improving Human Pose-Shape Estimators with Conformalized Deep Uncertainty
- URL: http://arxiv.org/abs/2412.10431v1
- Date: Wed, 11 Dec 2024 03:11:44 GMT
- Title: CUPS: Improving Human Pose-Shape Estimators with Conformalized Deep Uncertainty
- Authors: Harry Zhang, Luca Carlone,
- Abstract summary: CUPS is a novel method for learning sequence-to-sequence 3D human shapes and poses from RGB videos with uncertainty quantification.
We develop a method to generate and score multiple hypotheses during training, effectively integrating uncertainty quantification into the learning process.
Post-training, the learned deep uncertainty model is used as the conformity score, which can be used to calibrate a conformal predictor.
- Score: 20.476154502171696
- License:
- Abstract: We introduce CUPS, a novel method for learning sequence-to-sequence 3D human shapes and poses from RGB videos with uncertainty quantification. To improve on top of prior work, we develop a method to generate and score multiple hypotheses during training, effectively integrating uncertainty quantification into the learning process. This process results in a deep uncertainty function that is trained end-to-end with the 3D pose estimator. Post-training, the learned deep uncertainty model is used as the conformity score, which can be used to calibrate a conformal predictor in order to assess the quality of the output prediction. Since the data in human pose-shape learning is not fully exchangeable, we also present two practical bounds for the coverage gap in conformal prediction, developing theoretical backing for the uncertainty bound of our model. Our results indicate that by taking advantage of deep uncertainty with conformal prediction, our method achieves state-of-the-art performance across various metrics and datasets while inheriting the probabilistic guarantees of conformal prediction.
Related papers
- CHAMP: Conformalized 3D Human Multi-Hypothesis Pose Estimators [20.476154502171696]
CHAMP is a novel method for learning sequence-to-sequence, multi-hypothesis 3D human poses from 2D keypoints.
Our results indicate that using a simple mean aggregation on the conformal prediction-filtered hypotheses set yields competitive results.
arXiv Detail & Related papers (2024-05-27T02:42:38Z) - Efficient Normalized Conformal Prediction and Uncertainty Quantification
for Anti-Cancer Drug Sensitivity Prediction with Deep Regression Forests [0.0]
Conformal Prediction has emerged as a promising method to pair machine learning models with prediction intervals.
We propose a method to estimate the uncertainty of each sample by calculating the variance obtained from a Deep Regression Forest.
arXiv Detail & Related papers (2024-02-21T19:09:53Z) - Calibrated Uncertainty Quantification for Operator Learning via
Conformal Prediction [95.75771195913046]
We propose a risk-controlling quantile neural operator, a distribution-free, finite-sample functional calibration conformal prediction method.
We provide a theoretical calibration guarantee on the coverage rate, defined as the expected percentage of points on the function domain.
Empirical results on a 2D Darcy flow and a 3D car surface pressure prediction task validate our theoretical results.
arXiv Detail & Related papers (2024-02-02T23:43:28Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Quantifying Deep Learning Model Uncertainty in Conformal Prediction [1.4685355149711297]
Conformal Prediction is a promising framework for representing the model uncertainty.
In this paper, we explore state-of-the-art CP methodologies and their theoretical foundations.
arXiv Detail & Related papers (2023-06-01T16:37:50Z) - Toward Reliable Human Pose Forecasting with Uncertainty [51.628234388046195]
We develop an open-source library for human pose forecasting, including multiple models, supporting several datasets.
We devise two types of uncertainty in the problem to increase performance and convey better trust.
arXiv Detail & Related papers (2023-04-13T17:56:08Z) - Training Uncertainty-Aware Classifiers with Conformalized Deep Learning [7.837881800517111]
Deep neural networks are powerful tools to detect hidden patterns in data and leverage them to make predictions, but they are not designed to understand uncertainty.
We develop a novel training algorithm that can lead to more dependable uncertainty estimates, without sacrificing predictive power.
arXiv Detail & Related papers (2022-05-12T05:08:10Z) - Dynamic Iterative Refinement for Efficient 3D Hand Pose Estimation [87.54604263202941]
We propose a tiny deep neural network of which partial layers are iteratively exploited for refining its previous estimations.
We employ learned gating criteria to decide whether to exit from the weight-sharing loop, allowing per-sample adaptation in our model.
Our method consistently outperforms state-of-the-art 2D/3D hand pose estimation approaches in terms of both accuracy and efficiency for widely used benchmarks.
arXiv Detail & Related papers (2021-11-11T23:31:34Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
Enhanced Probabilistic Dense Correspondence Network, PDC-Net+, capable of estimating accurate dense correspondences.
We develop an architecture and an enhanced training strategy tailored for robust and generalizable uncertainty prediction.
Our approach obtains state-of-the-art results on multiple challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-09-28T17:56:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.