論文の概要: Interactively Diagnosing Errors in a Semantic Parser
- arxiv url: http://arxiv.org/abs/2407.06400v1
- Date: Mon, 8 Jul 2024 21:16:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 19:54:43.134773
- Title: Interactively Diagnosing Errors in a Semantic Parser
- Title(参考訳): 意味的パーザにおけるエラーの相互診断
- Authors: Constantine Nakos, Kenneth D. Forbus,
- Abstract要約: 本稿では,CNLUのための対話型エラー診断システムについて述べる。
モデルベース診断問題として,INLDパイプラインの最初の2段階をキャストする方法を示す。
本システムでは, 合成例における意味的誤りを診断する能力を示す。
- 参考スコア(独自算出の注目度): 7.136205674624813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hand-curated natural language systems provide an inspectable, correctable alternative to language systems based on machine learning, but maintaining them requires considerable effort and expertise. Interactive Natural Language Debugging (INLD) aims to lessen this burden by casting debugging as a reasoning problem, asking the user a series of questions to diagnose and correct errors in the system's knowledge. In this paper, we present work in progress on an interactive error diagnosis system for the CNLU semantic parser. We show how the first two stages of the INLD pipeline (symptom identification and error localization) can be cast as a model-based diagnosis problem, demonstrate our system's ability to diagnose semantic errors on synthetic examples, and discuss design challenges and frontiers for future work.
- Abstract(参考訳): 手作業による自然言語システムは、機械学習に基づく言語システムの検査可能で修正可能な代替手段を提供するが、その維持にはかなりの努力と専門知識が必要である。
対話型自然言語デバッグ(INLD)は、システム知識のエラーを診断し修正するための一連の質問をユーザに求め、デバッグを推論問題としてキャストすることで、この負担を軽減することを目的としている。
本稿では,CNLUセマンティックパーサの対話型エラー診断システムについて述べる。
我々は,INLDパイプラインの最初の2段階(症状識別とエラーの局所化)をモデルベース診断問題として捉え,合成例における意味的誤りを診断するシステムの能力を実証し,今後の課題とフロンティアについて論じる。
関連論文リスト
- Eliciting Problem Specifications via Large Language Models [4.055489363682198]
大型言語モデル(LLM)は、問題クラスを半形式仕様にマッピングするために利用することができる。
認知システムは、問題空間仕様を使用して、問題クラスからの問題の複数のインスタンスを解決することができる。
論文 参考訳(メタデータ) (2024-05-20T16:19:02Z) - Integrating LLMs for Explainable Fault Diagnosis in Complex Systems [0.0]
本稿では,原子力プラントなどの複雑なシステムにおける故障診断の説明可能性を高めるための統合システムを提案する。
物理に基づく診断ツールとLarge Language Modelを組み合わせることで、障害を識別するだけでなく、その原因と意味を明確かつ理解可能な説明を提供する新しいソリューションを提供する。
論文 参考訳(メタデータ) (2024-02-08T22:11:21Z) - Language Models can be Logical Solvers [99.40649402395725]
論理解法の推論過程を直接エミュレートする新しい言語モデルであるLoGiPTを導入する。
LoGiPTは、導出的ソルバの見えない推論過程を明らかにして精錬することから導かれる、新しく構築された命令チューニングデータセットに基づいて微調整される。
論文 参考訳(メタデータ) (2023-11-10T16:23:50Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - Improving Pre-trained Language Models with Syntactic Dependency
Prediction Task for Chinese Semantic Error Recognition [52.55136323341319]
既存の中国語のテキスト誤り検出は主にスペルと単純な文法的誤りに焦点を当てている。
中国の意味的誤りは、人間が容易に認識できないほど過小評価され、複雑である。
論文 参考訳(メタデータ) (2022-04-15T13:55:32Z) - Combining GCN and Transformer for Chinese Grammatical Error Detection [0.0]
NLPTEA-2020 Task: Chinese Grammatical Error Diagnosis (CGED) における本システムについて紹介する。
CGEDは、欠失語(M)、冗長語(R)、不適切な語選択(S)、不規則語(W)の4種類の文法的誤りを診断することを目的としている。
論文 参考訳(メタデータ) (2021-05-19T12:17:07Z) - Zero-Shot Cross-lingual Semantic Parsing [56.95036511882921]
7つのテスト言語に対する並列データを持たないゼロショット問題として,言語間セマンティックパーシングについて検討した。
英文論理形式ペアデータのみを用いて解析知識を付加言語に転送するマルチタスクエンコーダデコーダモデルを提案する。
このシステムは、ゼロショット解析を潜時空間アライメント問題としてフレーム化し、事前訓練されたモデルを改善し、最小のクロスリンガル転送ペナルティで論理形式を生成することができる。
論文 参考訳(メタデータ) (2021-04-15T16:08:43Z) - Robustness Testing of Language Understanding in Dialog Systems [33.30143655553583]
自然言語理解モデルの頑健性に関して総合的な評価と分析を行う。
本稿では,実世界の対話システムにおける言語理解に関連する3つの重要な側面,すなわち言語多様性,音声特性,雑音摂動について紹介する。
対話システムにおける堅牢性問題をテストするための自然摂動を近似するモデル非依存型ツールキットLAUGを提案する。
論文 参考訳(メタデータ) (2020-12-30T18:18:47Z) - On the Robustness of Language Encoders against Grammatical Errors [66.05648604987479]
我々は、非ネイティブ話者から実際の文法的誤りを収集し、これらの誤りをクリーンテキストデータ上でシミュレートするために敵攻撃を行う。
結果,全ての試験モデルの性能は影響するが,影響の程度は異なることがわかった。
論文 参考訳(メタデータ) (2020-05-12T11:01:44Z) - Data Augmentation for Spoken Language Understanding via Pretrained
Language Models [113.56329266325902]
音声言語理解(SLU)モデルの訓練は、しばしばデータ不足の問題に直面している。
我々は,事前学習言語モデルを用いたデータ拡張手法を提案し,生成した発話の変動性と精度を向上した。
論文 参考訳(メタデータ) (2020-04-29T04:07:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。