論文の概要: Variational Quantum Algorithms for Combinatorial Optimization
- arxiv url: http://arxiv.org/abs/2407.06421v1
- Date: Mon, 8 Jul 2024 22:02:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 19:54:43.112244
- Title: Variational Quantum Algorithms for Combinatorial Optimization
- Title(参考訳): 組合せ最適化のための変分量子アルゴリズム
- Authors: Daniel F Perez-Ramirez,
- Abstract要約: 変分アルゴリズム (VQA) は, NISQシステムの実用化に向けた最有力候補の1つである。
本稿では,VQAの現状と最近の発展を考察し,近似最適化への適用性を強調した。
10ノードと20ノードのグラフ上でMaxCut問題を解くために,深さの異なるQAOA回路を実装した。
- 参考スコア(独自算出の注目度): 0.571097144710995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The promise of quantum computing to address complex problems requiring high computational resources has long been hindered by the intrinsic and demanding requirements of quantum hardware development. Nonetheless, the current state of quantum computing, denominated Noisy Intermediate-Scale Quantum (NISQ) era, has introduced algorithms and methods that are able to harness the computational power of current quantum computers with advantages over classical computers (referred to as quantum advantage). Achieving quantum advantage is of particular relevance for the combinatorial optimization domain, since it often implies solving an NP-Hard optimization problem. Moreover, combinatorial problems are highly relevant for practical application areas, such as operations research, or resource allocation problems. Among quantum computing methods, Variational Quantum Algorithms (VQA) have emerged as one of the strongest candidates towards reaching practical applicability of NISQ systems. This paper explores the current state and recent developments of VQAs, emphasizing their applicability to combinatorial optimization. We identify the Quantum Approximate Optimization Algorithm (QAOA) as the leading candidate for these problems. Furthermore, we implement QAOA circuits with varying depths to solve the MaxCut problem on graphs with 10 and 20 nodes, demonstrating the potential and challenges of using VQAs in practical optimization tasks. We release our code, dataset and optimized circuit parameters under https://github.com/DanielFPerez/VQA-for-MaxCut.
- Abstract(参考訳): 高い計算資源を必要とする複雑な問題に対処する量子コンピューティングの約束は、量子ハードウェア開発の本質的で要求の多い要求によって長い間妨げられてきた。
それにもかかわらず、量子コンピューティングの現在の状態である、Noisy Intermediate-Scale Quantum (NISQ) 時代は、現在の量子コンピュータの計算能力を古典的コンピュータよりも有利に活用できるアルゴリズムや手法を導入している(量子優位性と呼ばれる)。
量子優位性を実現することは、NP-Hard最適化問題の解決を意味することが多いため、組合せ最適化領域に特に関係している。
さらに、組合せ問題は、運用研究や資源配分問題といった実践的な応用分野に非常に関係している。
量子コンピューティングの手法の中で、変分量子アルゴリズム(VQA)は、NISQシステムの実用性に到達するための最も強力な候補の1つである。
本稿では,VQAの現状と最近の発展について考察し,組合せ最適化への適用性を強調した。
本稿では,量子近似最適化アルゴリズム (QAOA) をこれらの問題の候補として挙げる。
さらに,10ノードと20ノードのグラフ上でのMaxCut問題を解くために,深さの異なるQAOA回路を実装し,実用最適化タスクにおけるVQAの利用の可能性と課題を明らかにした。
コード、データセット、最適化された回路パラメータをhttps://github.com/DanielFPerez/VQA-for-MaxCutでリリースします。
関連論文リスト
- PO-QA: A Framework for Portfolio Optimization using Quantum Algorithms [4.2435928520499635]
ポートフォリオ最適化(PO)は、投資ポートフォリオのリスクを最小限に抑えつつ、純利益を最大化することを目的とした金融問題である。
本稿では,量子パラメータの変動を調べるために,新しいスケーラブルなフレームワークPO-QAを提案する。
本結果は,量子機械学習のレンズからPOを理解する上で有効な知見を提供する。
論文 参考訳(メタデータ) (2024-07-29T10:26:28Z) - Graph Learning for Parameter Prediction of Quantum Approximate
Optimization Algorithm [14.554010382366302]
量子近似最適化(Quantum Approximate Optimization, QAOA)は、Max-Cutの問題を効率的に解く可能性において際立っている。
我々は,GNNをウォームスタート手法として,グラフニューラルネットワーク(GNN)を用いてQAOAを最適化する。
以上の結果から,量子コンピューティングにおけるGNNのQAOA性能向上の可能性が示唆され,量子古典的ハイブリッドコンピューティングへの新たな道が開かれた。
論文 参考訳(メタデータ) (2024-03-05T20:23:25Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Quantum-Informed Recursive Optimization Algorithms [0.0]
最適化問題に対する量子インフォームド再帰最適化(QIRO)アルゴリズムのファミリを提案し,実装する。
提案手法は、量子資源を利用して、問題固有の古典的還元ステップで使用される情報を得る。
バックトラック技術を用いて、量子ハードウェアの要求を増大させることなく、アルゴリズムの性能をさらに向上させる。
論文 参考訳(メタデータ) (2023-08-25T18:02:06Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
我々は、ニューラルネットワークの量子対する最も有望な候補として登場した変分量子回路(VQC)に注目した。
有望な結果を示す一方で、バレン高原、重みの周期性、アーキテクチャの選択など、さまざまな問題のために、VQCのトレーニングは困難である。
本稿では,VQCの重みとアーキテクチャの両方を最適化するために,自然進化にインスパイアされた勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-14T08:03:20Z) - Information scrambling and entanglement in quantum approximate
optimization algorithm circuits [9.730534141168752]
変分量子アルゴリズムは、ノイズのある中間スケール量子(NISQ)時代に量子アドバンテージを示すことを約束している。
本稿では,QAOA回路における情報スクランブルと絡み合いについて検討し,より難しい問題に対して,より多くの量子資源が必要であることを明らかにする。
論文 参考訳(メタデータ) (2023-01-18T11:36:49Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
本稿では,グラフニューラルネットワーク(GNN)と組み合わせた強化学習(RL)手法を提案する。
この問題は、巨大な検索スペース、重い尾の報酬分布、そして困難なクレジット割り当てのために非常に難しい。
GNNを基本方針として利用するRLエージェントが,これらの課題にどのように対処できるかを示す。
論文 参考訳(メタデータ) (2022-04-18T21:45:13Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
浅いQAOA回路の量子ビット数と線形にスケールするグラフ分解に基づく古典的アルゴリズムを提案する。
我々の結果は、QAOAによる量子アドバンテージの探索だけでなく、NISQプロセッサのベンチマークにも有用である。
論文 参考訳(メタデータ) (2021-12-21T12:41:31Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。