InsightBench: Evaluating Business Analytics Agents Through Multi-Step Insight Generation
- URL: http://arxiv.org/abs/2407.06423v2
- Date: Thu, 10 Oct 2024 14:50:07 GMT
- Title: InsightBench: Evaluating Business Analytics Agents Through Multi-Step Insight Generation
- Authors: Gaurav Sahu, Abhay Puri, Juan Rodriguez, Amirhossein Abaskohi, Mohammad Chegini, Alexandre Drouin, Perouz Taslakian, Valentina Zantedeschi, Alexandre Lacoste, David Vazquez, Nicolas Chapados, Christopher Pal, Sai Rajeswar Mudumba, Issam Hadj Laradji,
- Abstract summary: We introduce InsightBench, a benchmark dataset with three key features.
It consists of 100 datasets representing diverse business use cases such as finance and incident management.
Unlike existing benchmarks focusing on answering single queries, InsightBench evaluates agents based on their ability to perform end-to-end data analytics.
- Score: 79.09622602860703
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data analytics is essential for extracting valuable insights from data that can assist organizations in making effective decisions. We introduce InsightBench, a benchmark dataset with three key features. First, it consists of 100 datasets representing diverse business use cases such as finance and incident management, each accompanied by a carefully curated set of insights planted in the datasets. Second, unlike existing benchmarks focusing on answering single queries, InsightBench evaluates agents based on their ability to perform end-to-end data analytics, including formulating questions, interpreting answers, and generating a summary of insights and actionable steps. Third, we conducted comprehensive quality assurance to ensure that each dataset in the benchmark had clear goals and included relevant and meaningful questions and analysis. Furthermore, we implement a two-way evaluation mechanism using LLaMA-3 as an effective, open-source evaluator to assess agents' ability to extract insights. We also propose AgentPoirot, our baseline data analysis agent capable of performing end-to-end data analytics. Our evaluation on InsightBench shows that AgentPoirot outperforms existing approaches (such as Pandas Agent) that focus on resolving single queries. We also compare the performance of open- and closed-source LLMs and various evaluation strategies. Overall, this benchmark serves as a testbed to motivate further development in comprehensive automated data analytics.
Related papers
- AgenticData: An Agentic Data Analytics System for Heterogeneous Data [12.67277567222908]
AgenticData is an agentic data analytics system that allows users to pose natural language (NL) questions while autonomously analyzing data sources across multiple domains.<n>We propose a multi-agent collaboration strategy by utilizing a data profiling agent for discovering relevant data, a semantic cross-validation agent for iterative optimization based on feedback, and a smart memory agent for maintaining short-term context.
arXiv Detail & Related papers (2025-08-07T03:33:59Z) - Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study [55.09905978813599]
Large Language Models (LLMs) hold promise in automating data analysis tasks.<n>Yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios.<n>In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs.
arXiv Detail & Related papers (2025-06-24T17:04:23Z) - Data-to-Dashboard: Multi-Agent LLM Framework for Insightful Visualization in Enterprise Analytics [2.7933239275667545]
We present an agentic system that automates the data-to-dashboard pipeline through modular LLM agents.<n>Unlike existing chart systems, our framework simulates the analytical reasoning process of business analysts.<n>Our approach shows improved insightfulness, domain relevance, and analytical depth, as measured by tailored evaluation metrics.
arXiv Detail & Related papers (2025-05-29T17:32:15Z) - IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis [60.32962597618861]
IDA-Bench is a novel benchmark evaluating large language models in multi-round interactive scenarios.<n>Agent performance is judged by comparing its final numerical output to the human-derived baseline.<n>Even state-of-the-art coding agents (like Claude-3.7-thinking) succeed on 50% of the tasks, highlighting limitations not evident in single-turn tests.
arXiv Detail & Related papers (2025-05-23T09:37:52Z) - AgentAda: Skill-Adaptive Data Analytics for Tailored Insight Discovery [20.333502467911828]
We introduce AgentAda, the first analytics agent that can learn and use new analytics skills to extract more specialized insights.
Unlike existing methods that require users to manually decide which data analytics method to apply, AgentAda automatically identifies the skill needed to perform the analysis.
We conducted a human evaluation demonstrating that AgentAda provides more insightful analytics than existing tools, with 48.78% of evaluators preferring its analyses, compared to 27.67% for the unskilled agent.
arXiv Detail & Related papers (2025-04-10T03:27:25Z) - FinSphere: A Conversational Stock Analysis Agent Equipped with Quantitative Tools based on Real-Time Database [7.268553732731626]
FinSphere is a conversational stock analysis agent.
An integrated framework combines real-time data feeds, quantitative tools, and an instruction-tuned LLM.
arXiv Detail & Related papers (2025-01-08T07:50:50Z) - OmniEval: An Omnidirectional and Automatic RAG Evaluation Benchmark in Financial Domain [62.89809156574998]
We introduce an omnidirectional and automatic RAG benchmark, OmniEval, in the financial domain.
Our benchmark is characterized by its multi-dimensional evaluation framework.
Our experiments demonstrate the comprehensiveness of OmniEval, which includes extensive test datasets.
arXiv Detail & Related papers (2024-12-17T15:38:42Z) - PUB: Plot Understanding Benchmark and Dataset for Evaluating Large Language Models on Synthetic Visual Data Interpretation [2.1184929769291294]
This paper presents a novel synthetic dataset designed to evaluate the proficiency of large language models in interpreting data visualizations.
Our dataset is generated using controlled parameters to ensure comprehensive coverage of potential real-world scenarios.
We employ multimodal text prompts with questions related to visual data in images to benchmark several state-of-the-art models.
arXiv Detail & Related papers (2024-09-04T11:19:17Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
We present DiscoveryBench, the first comprehensive benchmark that formalizes the multi-step process of data-driven discovery.
Our benchmark contains 264 tasks collected across 6 diverse domains, such as sociology and engineering.
Our benchmark, thus, illustrates the challenges in autonomous data-driven discovery and serves as a valuable resource for the community to make progress.
arXiv Detail & Related papers (2024-07-01T18:58:22Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
Large language model (LLM) agents have demonstrated impressive capabilities in utilizing external tools and knowledge to boost accuracy and hallucinations.
Here, we introduce AvaTaR, a novel and automated framework that optimize an LLM agent to effectively leverage provided tools, improving performance on a given task.
arXiv Detail & Related papers (2024-06-17T04:20:02Z) - DCA-Bench: A Benchmark for Dataset Curation Agents [9.60250892491588]
We propose a dataset curation agent benchmark, DCA-Bench, to measure large language models' capability of detecting hidden dataset quality issues.
Specifically, we collect diverse real-world dataset quality issues from eight open dataset platforms as a testbed.
The proposed benchmark can also serve as a testbed for measuring the capability of LLMs in problem discovery rather than just problem-solving.
arXiv Detail & Related papers (2024-06-11T14:02:23Z) - CMDBench: A Benchmark for Coarse-to-fine Multimodal Data Discovery in Compound AI Systems [10.71630696651595]
Compound AI systems (CASs) that employ LLMs as agents to accomplish knowledge-intensive tasks have garnered significant interest within database and AI communities.
silos of multimodal data sources make it difficult to identify appropriate data sources for accomplishing the task at hand.
We propose CMDBench, a benchmark modeling the complexity of enterprise data platforms.
arXiv Detail & Related papers (2024-06-02T01:10:41Z) - InfiAgent-DABench: Evaluating Agents on Data Analysis Tasks [84.7788065721689]
In this paper, we introduce InfiAgent-DABench, the first benchmark specifically designed to evaluate LLM-based agents on data analysis tasks.
This benchmark contains DAEval, a dataset consisting of 257 data analysis questions derived from 52 CSV files.
Building on top of our agent framework, we develop a specialized agent, DAAgent, which surpasses GPT-3.5 by 3.9% on DABench.
arXiv Detail & Related papers (2024-01-10T19:04:00Z) - On the Evaluation and Refinement of Vision-Language Instruction Tuning
Datasets [71.54954966652286]
We try to evaluate the Vision-Language Instruction-Tuning (VLIT) datasets.
We build a new dataset, REVO-LION, by collecting samples with higher SQ from each dataset.
Remarkably, even with only half of the complete data, the model trained on REVO-LION can achieve the performance comparable to simply adding all VLIT datasets up.
arXiv Detail & Related papers (2023-10-10T13:01:38Z) - Benchmarking Foundation Models with Language-Model-as-an-Examiner [47.345760054595246]
We propose a novel benchmarking framework, Language-Model-as-an-Examiner.
The LM serves as a knowledgeable examiner that formulates questions based on its knowledge and evaluates responses in a reference-free manner.
arXiv Detail & Related papers (2023-06-07T06:29:58Z) - OPTION: OPTImization Algorithm Benchmarking ONtology [4.060078409841919]
OPTION (OPTImization algorithm benchmarking ONtology) is a semantically rich, machine-readable data model for benchmarking platforms.
Our ontology provides the vocabulary needed for semantic annotation of the core entities involved in the benchmarking process.
It also provides means for automatic data integration, improved interoperability, and powerful querying capabilities.
arXiv Detail & Related papers (2022-11-21T10:34:43Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.