PUB: Plot Understanding Benchmark and Dataset for Evaluating Large Language Models on Synthetic Visual Data Interpretation
- URL: http://arxiv.org/abs/2409.02617v1
- Date: Wed, 4 Sep 2024 11:19:17 GMT
- Title: PUB: Plot Understanding Benchmark and Dataset for Evaluating Large Language Models on Synthetic Visual Data Interpretation
- Authors: Aneta Pawelec, Victoria Sara Wesołowska, Zuzanna Bączek, Piotr Sankowski,
- Abstract summary: This paper presents a novel synthetic dataset designed to evaluate the proficiency of large language models in interpreting data visualizations.
Our dataset is generated using controlled parameters to ensure comprehensive coverage of potential real-world scenarios.
We employ multimodal text prompts with questions related to visual data in images to benchmark several state-of-the-art models.
- Score: 2.1184929769291294
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability of large language models (LLMs) to interpret visual representations of data is crucial for advancing their application in data analysis and decision-making processes. This paper presents a novel synthetic dataset designed to evaluate the proficiency of LLMs in interpreting various forms of data visualizations, including plots like time series, histograms, violins, boxplots, and clusters. Our dataset is generated using controlled parameters to ensure comprehensive coverage of potential real-world scenarios. We employ multimodal text prompts with questions related to visual data in images to benchmark several state-of-the-art models like ChatGPT or Gemini, assessing their understanding and interpretative accuracy. To ensure data integrity, our benchmark dataset is generated automatically, making it entirely new and free from prior exposure to the models being tested. This strategy allows us to evaluate the models' ability to truly interpret and understand the data, eliminating possibility of pre-learned responses, and allowing for an unbiased evaluation of the models' capabilities. We also introduce quantitative metrics to assess the performance of the models, providing a robust and comprehensive evaluation tool. Benchmarking several state-of-the-art LLMs with this dataset reveals varying degrees of success, highlighting specific strengths and weaknesses in interpreting diverse types of visual data. The results provide valuable insights into the current capabilities of LLMs and identify key areas for improvement. This work establishes a foundational benchmark for future research and development aimed at enhancing the visual interpretative abilities of language models. In the future, improved LLMs with robust visual interpretation skills can significantly aid in automated data analysis, scientific research, educational tools, and business intelligence applications.
Related papers
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - FineCops-Ref: A new Dataset and Task for Fine-Grained Compositional Referring Expression Comprehension [10.482908189805872]
Referring Expression (REC) is a crucial cross-modal task that objectively evaluates the capabilities of language understanding, image comprehension, and language-to-image grounding.
We have established a new REC dataset characterized by two key features.
It includes negative text and images created through fine-grained editing and generation based on existing data.
arXiv Detail & Related papers (2024-09-23T06:56:51Z) - On Evaluation of Vision Datasets and Models using Human Competency Frameworks [20.802372291783488]
Item Response Theory (IRT) is a framework that infers interpretable latent parameters for an ensemble of models and each dataset item.
We assess model calibration, select informative data subsets, and demonstrate the usefulness of its latent parameters for analyzing and comparing models and datasets in computer vision.
arXiv Detail & Related papers (2024-09-06T06:20:11Z) - Advancing Multimodal Large Language Models in Chart Question Answering with Visualization-Referenced Instruction Tuning [1.6570772838074355]
multimodal large language models (MLLMs) exhibit great potential for chart question answering (CQA)
Recent efforts primarily focus on scaling up training datasets through data collection and synthesis.
We propose a visualization-referenced instruction tuning approach to guide the training dataset enhancement and model development.
arXiv Detail & Related papers (2024-07-29T17:04:34Z) - On Pre-training of Multimodal Language Models Customized for Chart Understanding [83.99377088129282]
This paper explores the training processes necessary to improve MLLMs' comprehension of charts.
We introduce CHOPINLLM, an MLLM tailored for in-depth chart comprehension.
arXiv Detail & Related papers (2024-07-19T17:58:36Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
Vision-Language Models (VLMs) are advanced models that can tackle more intricate tasks such as image captioning and visual question answering.
Our classification organizes VLMs into three distinct categories: models dedicated to vision-language understanding, models that process multimodal inputs to generate unimodal (textual) outputs and models that both accept and produce multimodal inputs and outputs.
We meticulously dissect each model, offering an extensive analysis of its foundational architecture, training data sources, as well as its strengths and limitations wherever possible.
arXiv Detail & Related papers (2024-02-20T18:57:34Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
We introduce a novel evaluation framework for Large Language Models (LLMs) such as textscLlama-2 and textscMistral.
This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora.
arXiv Detail & Related papers (2024-02-16T13:53:26Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
We propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning.
This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models.
Our research includes comprehensive experiments conducted on various datasets.
arXiv Detail & Related papers (2023-08-20T12:43:52Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - ELEVATER: A Benchmark and Toolkit for Evaluating Language-Augmented
Visual Models [102.63817106363597]
We build ELEVATER, the first benchmark to compare and evaluate pre-trained language-augmented visual models.
It consists of 20 image classification datasets and 35 object detection datasets, each of which is augmented with external knowledge.
We will release our toolkit and evaluation platforms for the research community.
arXiv Detail & Related papers (2022-04-19T10:23:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.