Graph Neural Networks and Deep Reinforcement Learning Based Resource Allocation for V2X Communications
- URL: http://arxiv.org/abs/2407.06518v1
- Date: Tue, 9 Jul 2024 03:14:11 GMT
- Title: Graph Neural Networks and Deep Reinforcement Learning Based Resource Allocation for V2X Communications
- Authors: Maoxin Ji, Qiong Wu, Pingyi Fan, Nan Cheng, Wen Chen, Jiangzhou Wang, Khaled B. Letaief,
- Abstract summary: This paper proposes a method that integrates Graph Neural Networks (GNN) with Deep Reinforcement Learning (DRL) to address this challenge.
By constructing a dynamic graph with communication links as nodes, the model aims to ensure a high success rate for V2V communication.
The proposed method retains the global feature learning capabilities of GNN and supports distributed network deployment.
- Score: 43.443526528832145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the rapidly evolving landscape of Internet of Vehicles (IoV) technology, Cellular Vehicle-to-Everything (C-V2X) communication has attracted much attention due to its superior performance in coverage, latency, and throughput. Resource allocation within C-V2X is crucial for ensuring the transmission of safety information and meeting the stringent requirements for ultra-low latency and high reliability in Vehicle-to-Vehicle (V2V) communication. This paper proposes a method that integrates Graph Neural Networks (GNN) with Deep Reinforcement Learning (DRL) to address this challenge. By constructing a dynamic graph with communication links as nodes and employing the Graph Sample and Aggregation (GraphSAGE) model to adapt to changes in graph structure, the model aims to ensure a high success rate for V2V communication while minimizing interference on Vehicle-to-Infrastructure (V2I) links, thereby ensuring the successful transmission of V2V link information and maintaining high transmission rates for V2I links. The proposed method retains the global feature learning capabilities of GNN and supports distributed network deployment, allowing vehicles to extract low-dimensional features that include structural information from the graph network based on local observations and to make independent resource allocation decisions. Simulation results indicate that the introduction of GNN, with a modest increase in computational load, effectively enhances the decision-making quality of agents, demonstrating superiority to other methods. This study not only provides a theoretically efficient resource allocation strategy for V2V and V2I communications but also paves a new technical path for resource management in practical IoV environments.
Related papers
- Diffusion-based Auction Mechanism for Efficient Resource Management in 6G-enabled Vehicular Metaverses [57.010829427434516]
In 6G-enable Vehicular Metaverses, vehicles are represented by Vehicle Twins (VTs), which serve as digital replicas of physical vehicles.
VT tasks are resource-intensive and need to be offloaded to ground Base Stations (BSs) for fast processing.
We propose a learning-based Modified Second-Bid (MSB) auction mechanism to optimize resource allocation between ground BSs and UAVs.
arXiv Detail & Related papers (2024-11-01T04:34:54Z) - Spectrum Sharing using Deep Reinforcement Learning in Vehicular Networks [0.14999444543328289]
The paper presents a few results and analyses, demonstrating the efficacy of the DQN model in enhancing spectrum sharing efficiency.
Both SARL and MARL models have exhibited successful rates of V2V communication, with the cumulative reward of the RL model reaching its maximum as training progresses.
arXiv Detail & Related papers (2024-10-16T12:59:59Z) - Joint Optimization of Age of Information and Energy Consumption in NR-V2X System based on Deep Reinforcement Learning [13.62746306281161]
Vehicle-to-Everything (V2X) specifications based on 5G New Radio (NR) technology.
Mode 2 Side-Link (SL) communication resembles Mode 4 in LTE-V2X, allowing direct communication between vehicles.
interference cancellation method is employed to mitigate this impact.
arXiv Detail & Related papers (2024-07-11T12:54:38Z) - Deep-Reinforcement-Learning-Based AoI-Aware Resource Allocation for RIS-Aided IoV Networks [43.443526528832145]
We propose a RIS-assisted internet of vehicles (IoV) network, considering the vehicle-to-everything (V2X) communication method.
In order to improve the timeliness of vehicle-to-infrastructure (V2I) links and the stability of vehicle-to-vehicle (V2V) links, we introduce the age of information (AoI) model and the payload transmission probability model.
arXiv Detail & Related papers (2024-06-17T06:16:07Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Transfer Learning in Multi-Agent Reinforcement Learning with Double
Q-Networks for Distributed Resource Sharing in V2X Communication [24.442174952832108]
This paper addresses the problem of decentralized spectrum sharing in vehicle-to-everything (V2X) communication networks.
The aim is to provide resource-efficient coexistence of vehicle-to-infrastructure(V2I) and vehicle-to-vehicle(V2V) links.
arXiv Detail & Related papers (2021-07-13T15:50:10Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
A graph-based framework called SMART is proposed to model and keep track of the statistics of vehicle-to-temporal (V2I) communication latency across a large geographical area.
We develop a graph reconstruction-based approach using a graph convolutional network integrated with a deep Q-networks algorithm.
Our results show that the proposed method can significantly improve both the accuracy and efficiency for modeling and the latency performance of large vehicular networks.
arXiv Detail & Related papers (2021-03-13T06:56:29Z) - Deep Learning-based Resource Allocation For Device-to-Device
Communication [66.74874646973593]
We propose a framework for the optimization of the resource allocation in multi-channel cellular systems with device-to-device (D2D) communication.
A deep learning (DL) framework is proposed, where the optimal resource allocation strategy for arbitrary channel conditions is approximated by deep neural network (DNN) models.
Our simulation results confirm that near-optimal performance can be attained with low time, which underlines the real-time capability of the proposed scheme.
arXiv Detail & Related papers (2020-11-25T14:19:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.