Spectrum Sharing using Deep Reinforcement Learning in Vehicular Networks
- URL: http://arxiv.org/abs/2410.12521v1
- Date: Wed, 16 Oct 2024 12:59:59 GMT
- Title: Spectrum Sharing using Deep Reinforcement Learning in Vehicular Networks
- Authors: Riya Dinesh Deshpande, Faheem A. Khan, Qasim Zeeshan Ahmed,
- Abstract summary: The paper presents a few results and analyses, demonstrating the efficacy of the DQN model in enhancing spectrum sharing efficiency.
Both SARL and MARL models have exhibited successful rates of V2V communication, with the cumulative reward of the RL model reaching its maximum as training progresses.
- Score: 0.14999444543328289
- License:
- Abstract: As the number of devices getting connected to the vehicular network grows exponentially, addressing the numerous challenges of effectively allocating spectrum in dynamic vehicular environment becomes increasingly difficult. Traditional methods may not suffice to tackle this issue. In vehicular networks safety critical messages are involved and it is important to implement an efficient spectrum allocation paradigm for hassle free communication as well as manage the congestion in the network. To tackle this, a Deep Q Network (DQN) model is proposed as a solution, leveraging its ability to learn optimal strategies over time and make decisions. The paper presents a few results and analyses, demonstrating the efficacy of the DQN model in enhancing spectrum sharing efficiency. Deep Reinforcement Learning methods for sharing spectrum in vehicular networks have shown promising outcomes, demonstrating the system's ability to adjust to dynamic communication environments. Both SARL and MARL models have exhibited successful rates of V2V communication, with the cumulative reward of the RL model reaching its maximum as training progresses.
Related papers
- Model Partition and Resource Allocation for Split Learning in Vehicular Edge Networks [24.85135243655983]
This paper proposes a novel U-shaped split federated learning (U-SFL) framework to address these challenges.
U-SFL is able to enhance privacy protection by keeping both raw data and labels on the vehicular user (VU) side.
To optimize communication efficiency, we introduce a semantic-aware auto-encoder (SAE) that significantly reduces the dimensionality of transmitted data.
arXiv Detail & Related papers (2024-11-11T07:59:13Z) - DRL Optimization Trajectory Generation via Wireless Network Intent-Guided Diffusion Models for Optimizing Resource Allocation [58.62766376631344]
We propose a customized wireless network intent (WNI-G) model to address different state variations of wireless communication networks.
Extensive simulation achieves greater stability in spectral efficiency and variations of traditional DRL models in dynamic communication systems.
arXiv Detail & Related papers (2024-10-18T14:04:38Z) - Optimizing Vehicular Networks with Variational Quantum Circuits-based Reinforcement Learning [10.964841612918539]
We develop a Variational Quantum Circuit (VQC)-based multi-objective reinforcement learning (MORL) framework to characterize efficient network selection and autonomous driving policies in a vehicular network (VNet)
Numerical results showcase notable enhancements in both convergence rates and rewards when compared to conventional deep-Q networks (DQNs)
arXiv Detail & Related papers (2024-05-29T10:57:25Z) - Improving the generalizability and robustness of large-scale traffic
signal control [3.8028221877086814]
We study the robustness of deep reinforcement-learning (RL) approaches to control traffic signals.
We show that recent methods remain brittle in the face of missing data.
We propose using a combination of distributional and vanilla reinforcement learning through a policy ensemble.
arXiv Detail & Related papers (2023-06-02T21:30:44Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Scalable Traffic Signal Controls using Fog-Cloud Based Multiagent
Reinforcement Learning [0.8258451067861933]
This study builds on recent work to present a scalable TSC model that may reduce the number of required enabling infrastructure.
A case study is carried out to demonstrate the effectiveness of the proposed model, and the results show much promise.
arXiv Detail & Related papers (2021-10-11T19:06:02Z) - A Deep Value-network Based Approach for Multi-Driver Order Dispatching [55.36656442934531]
We propose a deep reinforcement learning based solution for order dispatching.
We conduct large scale online A/B tests on DiDi's ride-dispatching platform.
Results show that CVNet consistently outperforms other recently proposed dispatching methods.
arXiv Detail & Related papers (2021-06-08T16:27:04Z) - IG-RL: Inductive Graph Reinforcement Learning for Massive-Scale Traffic
Signal Control [4.273991039651846]
Scaling adaptive traffic-signal control involves dealing with state and action spaces.
We introduce Inductive Graph Reinforcement Learning (IG-RL) based on graph-convolutional networks.
Our model can generalize to new road networks, traffic distributions, and traffic regimes.
arXiv Detail & Related papers (2020-03-06T17:17:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.