論文の概要: Sparse-DeRF: Deblurred Neural Radiance Fields from Sparse View
- arxiv url: http://arxiv.org/abs/2407.06613v1
- Date: Tue, 9 Jul 2024 07:36:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 18:56:02.889139
- Title: Sparse-DeRF: Deblurred Neural Radiance Fields from Sparse View
- Title(参考訳): スパース-DeRF:スパースビューからの分解型ニューラルラジアンス場
- Authors: Dogyoon Lee, Donghyeong Kim, Jungho Lee, Minhyeok Lee, Seunghoon Lee, Sangyoun Lee,
- Abstract要約: 本稿では,より現実的なシナリオに対するスパースビューから,分解型ニューラルラジアンスフィールド(DeRF)を構築することに焦点を当てる。
Sparse-DeRFは複雑なジョイント最適化を正則化し、緩和されたオーバーフィッティングアーティファクトとラディアンスフィールドの品質を向上した。
2ビュー,4ビュー,6ビューのぼかし画像からDeRFをトレーニングすることにより,Sparse-DeRFの有効性を示す。
- 参考スコア(独自算出の注目度): 17.214047499850487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent studies construct deblurred neural radiance fields (DeRF) using dozens of blurry images, which are not practical scenarios if only a limited number of blurry images are available. This paper focuses on constructing DeRF from sparse-view for more pragmatic real-world scenarios. As observed in our experiments, establishing DeRF from sparse views proves to be a more challenging problem due to the inherent complexity arising from the simultaneous optimization of blur kernels and NeRF from sparse view. Sparse-DeRF successfully regularizes the complicated joint optimization, presenting alleviated overfitting artifacts and enhanced quality on radiance fields. The regularization consists of three key components: Surface smoothness, helps the model accurately predict the scene structure utilizing unseen and additional hidden rays derived from the blur kernel based on statistical tendencies of real-world; Modulated gradient scaling, helps the model adjust the amount of the backpropagated gradient according to the arrangements of scene objects; Perceptual distillation improves the perceptual quality by overcoming the ill-posed multi-view inconsistency of image deblurring and distilling the pre-filtered information, compensating for the lack of clean information in blurry images. We demonstrate the effectiveness of the Sparse-DeRF with extensive quantitative and qualitative experimental results by training DeRF from 2-view, 4-view, and 6-view blurry images.
- Abstract(参考訳): 最近の研究は、多数のぼやけた画像しか利用できない場合、現実的なシナリオではない多くのぼやけた画像を用いて、デブロワード神経放射場(DeRF)を構築している。
本稿では,より現実的なシナリオのためのスパースビューからDeRFを構築することに焦点を当てる。
実験で確認したように、スパースビューからのDeRFの確立は、スパースビューからのボケカーネルとNeRFの同時最適化に起因する固有の複雑さにより、より困難な問題であることが証明された。
Sparse-DeRFは複雑なジョイント最適化を正則化し、緩和されたオーバーフィッティングアーティファクトとラディアンスフィールドの品質を向上した。
表面の滑らかさ, 実世界の統計的傾向に基づいて, ぼやけたカーネルから得られた隠された光線を正確に予測すること, 変調した勾配スケーリング, シーンオブジェクトの配置に応じてバックプロパゲート勾配の量を調整すること, 知覚的蒸留は, 画像の異常なマルチビューの不整合を克服し, プリフィルタされた情報を蒸留することにより, 知覚的品質を向上させること, ぼやけた画像におけるクリーンな情報の欠如を補うこと, などである。
2ビュー,4ビュー,6ビューのぼかし画像からDeRFをトレーニングすることにより,Sparse-DeRFの有効性を示す。
関連論文リスト
- RANRAC: Robust Neural Scene Representations via Random Ray Consensus [12.161889666145127]
RANRAC(RANdom RAy Consensus)は、一貫性のないデータの影響を排除するための効率的な手法である。
我々はRANSACパラダイムのファジィ適応を定式化し、大規模モデルへの適用を可能にした。
その結果, 新規な視点合成のための最先端のロバストな手法と比較して, 顕著な改善が見られた。
論文 参考訳(メタデータ) (2023-12-15T13:33:09Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
我々は,Neural Radiance Fields (NeRF) を用いてシーン座標回帰のためのトレーニングサンプルを生成することを提案する。
レンダリングにおけるNeRFの効率にもかかわらず、レンダリングされたデータの多くはアーティファクトによって汚染されるか、最小限の情報ゲインしか含まない。
論文 参考訳(メタデータ) (2023-10-10T20:11:13Z) - BID-NeRF: RGB-D image pose estimation with inverted Neural Radiance
Fields [0.0]
Inverted Neural Radiance Fields (iNeRF) アルゴリズムの改良を目標とし、画像ポーズ推定問題をNeRFに基づく反復線形最適化として定義する。
NeRFは、現実世界のシーンやオブジェクトのフォトリアリスティックな新しいビューを合成できる新しい空間表現モデルである。
論文 参考訳(メタデータ) (2023-10-05T14:27:06Z) - Reconstruct-and-Generate Diffusion Model for Detail-Preserving Image
Denoising [16.43285056788183]
再構成・生成拡散モデル(Reconstruct-and-Generate Diffusion Model, RnG)と呼ばれる新しい手法を提案する。
提案手法は, 再構成型復調ネットワークを利用して, 基礎となるクリーン信号の大半を復元する。
拡散アルゴリズムを用いて残留する高周波の詳細を生成し、視覚的品質を向上させる。
論文 参考訳(メタデータ) (2023-09-19T16:01:20Z) - Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network [52.77569396659629]
本稿では,低光環境下で撮像した光場(LF)画像の復元に,DCUNet(Deep compensation network openfolding)を提案する。
このフレームワークは、中間拡張結果を使用して照明マップを推定し、展開プロセスで新しい拡張結果を生成する。
本稿では,LF画像の特徴を適切に活用するために,擬似明示的特徴相互作用モジュールを提案する。
論文 参考訳(メタデータ) (2023-08-10T07:53:06Z) - NerfDiff: Single-image View Synthesis with NeRF-guided Distillation from
3D-aware Diffusion [107.67277084886929]
単一の画像からの新しいビュー合成には、オブジェクトやシーンの隠蔽領域を推論すると同時に、入力とのセマンティックおよび物理的整合性を同時に維持する必要がある。
そこで我々は,NerfDiffを提案する。NerfDiffは3D対応条件拡散モデル(CDM)の知識を,テスト時に仮想ビューの集合を合成・精製することで,NeRFに抽出することでこの問題に対処する。
さらに,CDMサンプルから3次元一貫した仮想ビューを同時に生成し,改良された仮想ビューに基づいてNeRFを微調整する新しいNeRF誘導蒸留アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-20T17:12:00Z) - Deblurred Neural Radiance Field with Physical Scene Priors [6.128295038453101]
本稿では,2つの物理的先行条件に制約されたぼやけた画像に対するDP-NeRFフレームワークを提案する。
本研究では,2種類のぼかしを有する合成シーンと実シーンに対して,カメラモーションのぼかしとデフォーカスのぼかしの2種類の実験結果を示す。
論文 参考訳(メタデータ) (2022-11-22T06:40:53Z) - CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural
Representations [77.90883737693325]
本稿では,スパース入力センサビューから観測される大規模な屋外運転シーンをモデル化することで,NeRFを大幅に改善するCLONeRを提案する。
これは、NeRFフレームワーク内の占有率と色学習を、それぞれLiDARとカメラデータを用いてトレーニングされた個別のMulti-Layer Perceptron(MLP)に分離することで実現される。
さらに,NeRFモデルと平行に3D Occupancy Grid Maps(OGM)を構築する手法を提案し,この占有グリッドを利用して距離空間のレンダリングのために線に沿った点のサンプリングを改善する。
論文 参考訳(メタデータ) (2022-09-02T17:44:50Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
実シーンにスーパーリゾリューション(SR)法を適用する際に周波数領域の整合性を保証する新しい周波数一貫性適応(FCA)を提案する。
監視されていない画像から劣化カーネルを推定し、対応するLow-Resolution (LR)画像を生成する。
ドメイン一貫性のあるLR-HRペアに基づいて、容易に実装可能な畳み込みニューラルネットワーク(CNN)SRモデルを訓練する。
論文 参考訳(メタデータ) (2020-12-18T08:25:39Z) - iNeRF: Inverting Neural Radiance Fields for Pose Estimation [68.91325516370013]
Neural RadianceField(NeRF)を「反転」してメッシュフリーポーズ推定を行うフレームワークiNeRFを紹介します。
NeRFはビュー合成のタスクに極めて有効であることが示されている。
論文 参考訳(メタデータ) (2020-12-10T18:36:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。