論文の概要: Towards Degradation-Robust Reconstruction in Generalizable NeRF
- arxiv url: http://arxiv.org/abs/2411.11691v1
- Date: Mon, 18 Nov 2024 16:13:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:32:49.315170
- Title: Towards Degradation-Robust Reconstruction in Generalizable NeRF
- Title(参考訳): 一般化可能なNeRFにおける劣化・破壊の再構築に向けて
- Authors: Chan Ho Park, Ka Leong Cheng, Zhicheng Wang, Qifeng Chen,
- Abstract要約: GNeRF(Generalizable Radiance Field)は,シーンごとの最適化を回避する手段として有効であることが証明されている。
GNeRFの強靭性は, ソース画像に現れる様々な種類の劣化に対して限定的に研究されている。
- 参考スコア(独自算出の注目度): 58.33351079982745
- License:
- Abstract: Generalizable Neural Radiance Field (GNeRF) across scenes has been proven to be an effective way to avoid per-scene optimization by representing a scene with deep image features of source images. However, despite its potential for real-world applications, there has been limited research on the robustness of GNeRFs to different types of degradation present in the source images. The lack of such research is primarily attributed to the absence of a large-scale dataset fit for training a degradation-robust generalizable NeRF model. To address this gap and facilitate investigations into the degradation robustness of 3D reconstruction tasks, we construct the Objaverse Blur Dataset, comprising 50,000 images from over 1000 settings featuring multiple levels of blur degradation. In addition, we design a simple and model-agnostic module for enhancing the degradation robustness of GNeRFs. Specifically, by extracting 3D-aware features through a lightweight depth estimator and denoiser, the proposed module shows improvement on different popular methods in GNeRFs in terms of both quantitative and visual quality over varying degradation types and levels. Our dataset and code will be made publicly available.
- Abstract(参考訳): GNeRF(Generalizable Neural Radiance Field)は、画像の深い画像の特徴を持つシーンを表現することで、シーンごとの最適化を回避する効果的な方法であることが証明されている。
しかし、実世界の応用の可能性にもかかわらず、GNeRFの強靭性は、ソース画像に存在する様々な種類の劣化に対して限定的に研究されている。
このような研究の欠如は、分解ロバストな一般化可能なNeRFモデルをトレーニングするための大規模なデータセットが存在しないことに起因する。
このギャップに対処し、3次元再構成タスクの劣化堅牢性の調査を容易にするため、複数のレベルのぼやけた劣化を特徴とする1000以上の設定から5万枚以上の画像からなるObjaverse Blurデータセットを構築した。
さらに,GNeRFの劣化堅牢性を高めるための簡易かつモデルに依存しないモジュールを設計する。
具体的には,軽量深度推定器とデノワザを用いて3次元認識特徴を抽出することにより,GNeRFにおける様々な人気手法の改善を,様々な劣化タイプやレベルに対して定量的および視覚的品質の両面から示す。
データセットとコードは公開されます。
関連論文リスト
- SG-NeRF: Neural Surface Reconstruction with Scene Graph Optimization [16.460851701725392]
本稿では,外乱ポーズの影響を軽減するため,シーングラフを用いた放射場最適化手法を提案する。
本手法では,シーングラフに基づく適応型不整合・不整合信頼度推定手法を取り入れた。
また、カメラのポーズと表面形状を最適化するために、効果的な交叉結合(IoU)損失を導入する。
論文 参考訳(メタデータ) (2024-07-17T15:50:17Z) - Sparse-DeRF: Deblurred Neural Radiance Fields from Sparse View [17.214047499850487]
本稿では,より現実的なシナリオに対するスパースビューから,分解型ニューラルラジアンスフィールド(DeRF)を構築することに焦点を当てる。
Sparse-DeRFは複雑なジョイント最適化を正則化し、緩和されたオーバーフィッティングアーティファクトとラディアンスフィールドの品質を向上した。
2ビュー,4ビュー,6ビューのぼかし画像からDeRFをトレーニングすることにより,Sparse-DeRFの有効性を示す。
論文 参考訳(メタデータ) (2024-07-09T07:36:54Z) - GTR: Improving Large 3D Reconstruction Models through Geometry and Texture Refinement [51.97726804507328]
マルチビュー画像から3次元メッシュを再構成する手法を提案する。
提案手法は, 変圧器を用いたトリプレーンジェネレータとニューラルレージアンスフィールド(NeRF)モデルを用いた大規模再構成モデルから着想を得たものである。
論文 参考訳(メタデータ) (2024-06-09T05:19:24Z) - RaFE: Generative Radiance Fields Restoration [38.602849644666165]
NeRF(Neural Radiance Fields)は、新しいビュー合成と3次元再構成において大きな可能性を証明している。
従来のNeRF修復法は、回復の一般性を無視して、特定の劣化タイプに合わせて調整されている。
本稿では,様々な種類の劣化に対して適用可能な一般放射場復元パイプラインであるRaFEを提案する。
論文 参考訳(メタデータ) (2024-04-04T17:59:50Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - Enhancing High-Resolution 3D Generation through Pixel-wise Gradient
Clipping [46.364968008574664]
高解像度の3Dオブジェクト生成は、包括的な注釈付きトレーニングデータの入手が限られているため、依然として困難な課題である。
近年の進歩は、広範囲なキュレートされたWebデータセットに事前訓練された画像生成モデルを活用することで、この制約を克服することを目的としている。
本稿では,既存の3次元生成モデルへのシームレスな統合を目的とした,Pixel-wise Gradient Clipping (PGC) と呼ばれる革新的な操作を提案する。
論文 参考訳(メタデータ) (2023-10-19T05:15:17Z) - PlaNeRF: SVD Unsupervised 3D Plane Regularization for NeRF Large-Scale
Scene Reconstruction [2.2369578015657954]
ニューラル・ラジアンス・フィールド(NeRF)は2次元画像から3次元シーンを再構成し、新しいビュー・シンセサイザー(NVS)のためのカメラポーズを可能にする
NeRFはオーバーフィットからトレーニングの視点に苦しむことが多く、ジオメトリーの再構築は不十分である。
本稿では,RGB画像とセマンティックマップのみを用いて,NeRFの3次元構造を改善する手法を提案する。
論文 参考訳(メタデータ) (2023-05-26T13:26:46Z) - Enhancement of Novel View Synthesis Using Omnidirectional Image
Completion [61.78187618370681]
ニューラルレイディアンス場(NeRF)に基づく1枚の360度RGB-D画像から新しいビューを合成する方法を提案する。
実験により,提案手法は実世界と実世界の両方でシーンの特徴を保ちながら,可塑性な新規なビューを合成できることが実証された。
論文 参考訳(メタデータ) (2022-03-18T13:49:25Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
空間的に変化する劣化に苦しむ画像の復元のための学習ベースソリューションを提案する。
本研究では、歪み局所化情報を活用し、画像中の困難な領域に動的に適応するネットワーク設計であるSPAIRを提案する。
論文 参考訳(メタデータ) (2021-08-19T11:02:25Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
本稿では,高解像度な3D画像を生成することができる新しいエンドツーエンドGANアーキテクチャを提案する。
トレーニングと推論の異なる構成を使用することで、この目標を達成する。
3次元胸郭CTと脳MRIの実験により、我々のアプローチは画像生成における最先端技術より優れていることが示された。
論文 参考訳(メタデータ) (2020-08-05T02:33:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。