Implicit Regression in Subspace for High-Sensitivity CEST Imaging
- URL: http://arxiv.org/abs/2407.06614v1
- Date: Tue, 9 Jul 2024 07:41:24 GMT
- Title: Implicit Regression in Subspace for High-Sensitivity CEST Imaging
- Authors: Chu Chen, Yang Liu, Se Weon Park, Jizhou Li, Kannie W. Y. Chan, Raymond H. F. Chan,
- Abstract summary: Implicit Regression in Subspace (IRIS) is an unsupervised denoising algorithm utilizing the excellent property of implicit neural representation for continuous mapping.
Experiments conducted on both synthetic and in-vivo data demonstrate that our proposed method surpasses other CEST denoising methods regarding both qualitative and quantitative performance.
- Score: 5.785771819376851
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chemical Exchange Saturation Transfer (CEST) MRI demonstrates its capability in significantly enhancing the detection of proteins and metabolites with low concentrations through exchangeable protons. The clinical application of CEST, however, is constrained by its low contrast and low signal-to-noise ratio (SNR) in the acquired data. Denoising, as one of the post-processing stages for CEST data, can effectively improve the accuracy of CEST quantification. In this work, by modeling spatial variant z-spectrums into low-dimensional subspace, we introduce Implicit Regression in Subspace (IRIS), which is an unsupervised denoising algorithm utilizing the excellent property of implicit neural representation for continuous mapping. Experiments conducted on both synthetic and in-vivo data demonstrate that our proposed method surpasses other CEST denoising methods regarding both qualitative and quantitative performance.
Related papers
- Synomaly Noise and Multi-Stage Diffusion: A Novel Approach for Unsupervised Anomaly Detection in Ultrasound Imaging [32.99597899937902]
We propose a novel unsupervised anomaly detection framework based on a diffusion model.
The proposed framework incorporates a synthetic anomaly (Synomaly) noise function and a multi-stage diffusion process.
We validate the proposed approach on carotid US, brain MRI, and liver CT datasets.
arXiv Detail & Related papers (2024-11-06T15:43:51Z) - A Flow-based Truncated Denoising Diffusion Model for Super-resolution Magnetic Resonance Spectroscopic Imaging [34.32290273033808]
This work introduces a Flow-based Truncated Denoising Diffusion Model for super-resolution MRSI.
It shortens the diffusion process by truncating the diffusion chain, and the truncated steps are estimated using a normalizing flow-based network.
We demonstrate that FTDDM outperforms existing generative models while speeding up the sampling process by over 9-fold.
arXiv Detail & Related papers (2024-10-25T03:42:35Z) - Volumetric Conditional Score-based Residual Diffusion Model for PET/MR Denoising [13.694516702501097]
PET imaging is a powerful modality offering quantitative assessments of molecular and physiological processes.
The necessity for PET denoising arises from the intrinsic high noise levels in PET imaging.
Our Conditional Score-based Residual Diffusion (CSRD) model addresses these issues by incorporating a refined score function and 3D patch-wise training strategy.
arXiv Detail & Related papers (2024-09-30T19:35:22Z) - Gadolinium dose reduction for brain MRI using conditional deep learning [66.99830668082234]
Two main challenges for these approaches are the accurate prediction of contrast enhancement and the synthesis of realistic images.
We address both challenges by utilizing the contrast signal encoded in the subtraction images of pre-contrast and post-contrast image pairs.
We demonstrate the effectiveness of our approach on synthetic and real datasets using various scanners, field strengths, and contrast agents.
arXiv Detail & Related papers (2024-03-06T08:35:29Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Noise-Free Score Distillation [78.79226724549456]
Noise-Free Score Distillation (NFSD) process requires minimal modifications to the original SDS framework.
We achieve more effective distillation of pre-trained text-to-image diffusion models while using a nominal CFG scale.
arXiv Detail & Related papers (2023-10-26T17:12:26Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - Denoising Single Voxel Magnetic Resonance Spectroscopy with Deep
Learning on Repeatedly Sampled In Vivo Data [17.291672952879022]
MRS is a noninvasive tool to reveal metabolic information.
One challenge of MRS is the relatively low Signal-Noise Ratio (SNR) due to low concentrations of metabolites.
Deep learning denoising approach is proposed to learn a mapping from the low SNR signal to the high SNR one.
arXiv Detail & Related papers (2021-01-26T05:36:44Z) - Self-supervised Dynamic CT Perfusion Image Denoising with Deep Neural
Networks [6.167259271197635]
Dynamic computed tomography (CTP) imaging is a promising approach for acute ischemic stroke diagnosis and evaluation.
Hemodynamic parametric maps of cerebral parenchyma are calculated from repeated CT scans of the first pass of iodinated contrast through the brain.
It is necessary to reduce the dose of perfusion for routine applications due to the high radiation exposure from the repeated scans, where image denoising is necessary to achieve a reliable diagnosis.
arXiv Detail & Related papers (2020-05-19T21:44:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.