論文の概要: SoftDedup: an Efficient Data Reweighting Method for Speeding Up Language Model Pre-training
- arxiv url: http://arxiv.org/abs/2407.06654v1
- Date: Tue, 9 Jul 2024 08:26:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 18:46:17.674324
- Title: SoftDedup: an Efficient Data Reweighting Method for Speeding Up Language Model Pre-training
- Title(参考訳): SoftDedup: 言語モデルの事前学習を高速化する効率的なデータ再重み付け手法
- Authors: Nan He, Weichen Xiong, Hanwen Liu, Yi Liao, Lei Ding, Kai Zhang, Guohua Tang, Xiao Han, Wei Yang,
- Abstract要約: 本稿では,データセットの整合性を維持しつつ,データのサンプリング重量を高い共通度で選択的に削減するソフトデ重複手法を提案する。
このアプローチの中心にあるのは、重複の度合いを定量化する指標である"データ共通性"(data commonness)の概念です。
経験的分析により、この手法はトレーニング効率を著しく改善し、必要なトレーニングステップを少なくとも26%減らすことなく、同等のパープレキシティスコアを達成できることが示されている。
- 参考スコア(独自算出の注目度): 12.745160748376794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The effectiveness of large language models (LLMs) is often hindered by duplicated data in their extensive pre-training datasets. Current approaches primarily focus on detecting and removing duplicates, which risks the loss of valuable information and neglects the varying degrees of duplication. To address this, we propose a soft deduplication method that maintains dataset integrity while selectively reducing the sampling weight of data with high commonness. Central to our approach is the concept of "data commonness", a metric we introduce to quantify the degree of duplication by measuring the occurrence probabilities of samples using an n-gram model. Empirical analysis shows that this method significantly improves training efficiency, achieving comparable perplexity scores with at least a 26% reduction in required training steps. Additionally, it enhances average few-shot downstream accuracy by 1.77% when trained for an equivalent duration. Importantly, this approach consistently improves performance, even on rigorously deduplicated datasets, indicating its potential to complement existing methods and become a standard pre-training process for LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)の有効性は、大規模な事前学習データセットの重複データによって妨げられることが多い。
現在のアプローチは主に重複の検出と削除に重点を置いており、これは貴重な情報の喪失を危険にさらすとともに、重複の度合いを無視する。
そこで本研究では,データセットの整合性を維持しつつ,データのサンプリング重量を高い共通度で選択的に削減するソフトデ重複手法を提案する。
これは、n-gramモデルを用いてサンプルの発生確率を測定することにより、複製の度合いを定量化する指標である。
経験的分析により、この手法はトレーニング効率を著しく改善し、必要なトレーニングステップを少なくとも26%減らすことなく、同等のパープレキシティスコアを達成できることが示されている。
さらに、同等の期間のトレーニングを行うと、平均的な数発の下流精度が1.77%向上する。
重要なことに、このアプローチは厳格に重複したデータセットでも継続的にパフォーマンスを改善し、既存のメソッドを補完し、LLMの標準的な事前トレーニングプロセスになる可能性を示している。
関連論文リスト
- Fine-tuning can Help Detect Pretraining Data from Large Language Models [7.7209640786782385]
現在のメソッドでは、PerplexityやMin-k%といったスコアリング関数を設計することで、メンバと非メンバを区別している。
本研究では,FSD(Fun-Tuned Score Deviation)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-09T15:36:42Z) - Beyond Efficiency: Molecular Data Pruning for Enhanced Generalization [30.738229850748137]
MolPegは、一般化を強化するための分子データプルーニングフレームワークである。
これは、事前訓練されたモデルでデータプルーニングを適用する、ソースフリーなデータプルーニングシナリオに焦点を当てている。
4つのダウンストリームタスクで既存のDPメソッドを一貫して上回ります。
論文 参考訳(メタデータ) (2024-09-02T09:06:04Z) - Self-training Large Language Models through Knowledge Detection [26.831873737733737]
大規模な言語モデル(LLM)は、ダウンストリームタスク間で印象的なパフォーマンスを達成するために、広範囲のラベル付きデータセットとトレーニング計算を必要とすることが多い。
本稿では,LLMが独自ラベルを自動でキュレートし,未知のデータサンプルを選択的に学習する自己学習パラダイムについて検討する。
経験的評価は、複数の被験者にまたがる世代における幻覚の減少に有意な改善を示した。
論文 参考訳(メタデータ) (2024-06-17T07:25:09Z) - Incremental Self-training for Semi-supervised Learning [56.57057576885672]
ISTは単純だが有効であり、既存の自己学習に基づく半教師あり学習手法に適合する。
提案したISTを5つのデータセットと2種類のバックボーンで検証し,認識精度と学習速度を効果的に向上させる。
論文 参考訳(メタデータ) (2024-04-14T05:02:00Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
我々は,クラスごとのサンプル数に関する事前知識を必要とせず,シンプルなロジットアプローチ(LORT)を開発した。
提案手法は,CIFAR100-LT, ImageNet-LT, iNaturalist 2018など,様々な不均衡データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-01T03:27:08Z) - How to Train Data-Efficient LLMs [56.41105687693619]
事前学習言語モデル(LLM)に対するデータ効率のアプローチについて検討する。
Ask-LLMと密度サンプリングがそれぞれのカテゴリで最適であることがわかった。
何百もの評価タスクと事前学習作業を含む19個のサンプルを比較したところ,Ask-LLMと密度がそれぞれのカテゴリで最適な方法であることが判明した。
論文 参考訳(メタデータ) (2024-02-15T02:27:57Z) - Stochastic Amortization: A Unified Approach to Accelerate Feature and Data Attribution [62.71425232332837]
雑音ラベル付きモデルを用いたトレーニングは安価で驚くほど効果的であることを示す。
このアプローチは、いくつかの特徴属性とデータ評価手法を著しく加速し、しばしば既存のアプローチよりも桁違いにスピードアップする。
論文 参考訳(メタデータ) (2024-01-29T03:42:37Z) - Efficient Online Data Mixing For Language Model Pre-Training [101.45242332613944]
既存のデータ選択方法は、遅くて計算コストのかかるプロセスに悩まされる。
一方、データミキシングは、データポイントをまとめることで、データ選択の複雑さを低減する。
我々は,データ選択とデータ混合の両要素を組み合わせたオンラインデータ混合(ODM)の効率的なアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-12-05T00:42:35Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
量子回帰に基づくタスクネットワークのアンサンブルを用いて不確実性を推定する新しい手法であるQuantile Sub-Ensemblesを提案する。
提案手法は,高い損失率に頑健な高精度な計算法を生成するだけでなく,非生成モデルの高速な学習により,計算効率も向上する。
論文 参考訳(メタデータ) (2023-12-03T05:52:30Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
本稿では,分布マッチングに基づく新しいデータセット凝縮法を提案する。
提案手法は,計算資源の少ない従来の最適化指向手法よりも優れている。
論文 参考訳(メタデータ) (2023-07-19T04:07:33Z) - A Data-Centric Approach for Improving Adversarial Training Through the
Lens of Out-of-Distribution Detection [0.4893345190925178]
複雑なアルゴリズムを適用して効果を緩和するのではなく, トレーニング手順から直接ハードサンプルを検出し, 除去することを提案する。
SVHN と CIFAR-10 データセットを用いた結果,計算コストの増大を伴わずに対角訓練の改善に本手法の有効性が示された。
論文 参考訳(メタデータ) (2023-01-25T08:13:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。