論文の概要: Accelerating Online Mapping and Behavior Prediction via Direct BEV Feature Attention
- arxiv url: http://arxiv.org/abs/2407.06683v1
- Date: Tue, 9 Jul 2024 08:59:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 18:36:32.257113
- Title: Accelerating Online Mapping and Behavior Prediction via Direct BEV Feature Attention
- Title(参考訳): 直接BEV機能注意によるオンラインマッピングと行動予測の高速化
- Authors: Xunjiang Gu, Guanyu Song, Igor Gilitschenski, Marco Pavone, Boris Ivanovic,
- Abstract要約: 本稿では,オンライン地図推定手法の豊富な内部的特徴を明らかにするとともに,オンライン地図と軌跡予測をより緊密に統合する方法について述べる。
これにより、内部のBEV機能に直接アクセスすると、推論速度が最大73%速くなり、実際のnuScenesデータセット上では最大29%の正確な予測が得られます。
- 参考スコア(独自算出の注目度): 30.190497345299004
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding road geometry is a critical component of the autonomous vehicle (AV) stack. While high-definition (HD) maps can readily provide such information, they suffer from high labeling and maintenance costs. Accordingly, many recent works have proposed methods for estimating HD maps online from sensor data. The vast majority of recent approaches encode multi-camera observations into an intermediate representation, e.g., a bird's eye view (BEV) grid, and produce vector map elements via a decoder. While this architecture is performant, it decimates much of the information encoded in the intermediate representation, preventing downstream tasks (e.g., behavior prediction) from leveraging them. In this work, we propose exposing the rich internal features of online map estimation methods and show how they enable more tightly integrating online mapping with trajectory forecasting. In doing so, we find that directly accessing internal BEV features yields up to 73% faster inference speeds and up to 29% more accurate predictions on the real-world nuScenes dataset.
- Abstract(参考訳): 道路形状を理解することは、自動運転車(AV)スタックの重要な構成要素である。
ハイデフィニション(HD)マップはそのような情報を容易に提供できるが、高いラベリングとメンテナンスコストに悩まされる。
近年,センサデータからHDマップをオンラインに推定する手法が提案されている。
近年のアプローチの大半は、マルチカメラ観測を中間表現(例えば、鳥眼ビュー(BEV)グリッド)にエンコードし、デコーダを介してベクトルマップ要素を生成する。
このアーキテクチャはパフォーマンスが高いが、中間表現に符号化された情報の多くを解読し、下流のタスク(例えば振る舞い予測)がそれらを活用するのを防ぐ。
本研究では,オンライン地図推定手法の豊富な内部的特徴を明らかにするとともに,オンライン地図と軌跡予測とのより緊密な統合を実現する方法を示す。
そうすることで、内部のBEV機能に直接アクセスすることで、実際のnuScenesデータセット上で最大で73%高速な推論速度と最大29%の正確な予測が可能になることが分かりました。
関連論文リスト
- TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior [70.84644266024571]
我々は、標準定義地図(SDMaps)を見るために知覚モデルを訓練することを提案する。
我々はSDMap要素をニューラル空間マップ表現やインスタンストークンにエンコードし、先行情報のような補完的な特徴を組み込む。
レーンセグメント表現フレームワークに基づいて、モデルはレーン、中心線、およびそれらのトポロジを同時に予測する。
論文 参考訳(メタデータ) (2024-11-22T06:13:42Z) - SemVecNet: Generalizable Vector Map Generation for Arbitrary Sensor Configurations [3.8472678261304587]
センサ構成への一般化を改善したベクトルマップ生成のためのモジュールパイプラインを提案する。
センサ構成に頑健なBEVセマンティックマップを採用することにより,提案手法は一般化性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-04-30T23:45:16Z) - Producing and Leveraging Online Map Uncertainty in Trajectory Prediction [30.190497345299004]
我々は、現在最先端のオンラインマップ推定手法を拡張し、不確実性をさらに見積もる。
その結果,不確実性の導入によってトレーニングの収束が最大50%速くなり,予測性能が最大15%向上することがわかった。
論文 参考訳(メタデータ) (2024-03-25T05:58:33Z) - Augmenting Lane Perception and Topology Understanding with Standard
Definition Navigation Maps [51.24861159115138]
Standard Definition (SD) マップは、より安価で、世界中でカバーでき、スケーラブルな代替手段を提供する。
本稿では,オンライン地図予測にSDマップを統合する新しいフレームワークを提案し,Transformer を用いたエンコーダ SD Map Representations を提案する。
この拡張は、現在の最先端のオンラインマップ予測手法におけるレーン検出とトポロジー予測を一貫して(最大60%まで)大幅に向上させる。
論文 参考訳(メタデータ) (2023-11-07T15:42:22Z) - StreamMapNet: Streaming Mapping Network for Vectorized Online HD Map
Construction [36.1596833523566]
本稿では,ビデオの時系列時間的モデリングに適応した新しいオンラインマッピングパイプラインであるStreamMapNetを紹介する。
StreamMapNetは、高安定性の大規模ローカルHDマップの構築を支援するマルチポイントアテンションと時間情報を利用する。
論文 参考訳(メタデータ) (2023-08-24T05:22:43Z) - Prior Based Online Lane Graph Extraction from Single Onboard Camera
Image [133.68032636906133]
単眼カメラ画像からレーングラフをオンラインに推定する。
前者は、トランスフォーマーベースのWasserstein Autoencoderを通じてデータセットから抽出される。
オートエンコーダは、最初のレーングラフ推定を強化するために使用される。
論文 参考訳(メタデータ) (2023-07-25T08:58:26Z) - InstaGraM: Instance-level Graph Modeling for Vectorized HD Map Learning [6.062751776009753]
搭載センサ観測からHDマップ要素を検出するオンラインHDマップ学習フレームワークを提案する。
InstaGraMでは、HDマップのインスタンスレベルのグラフモデリングは、正確かつ高速なベクトル化HDマップ学習をもたらす。
提案するネットワークは,従来のモデルよりも最大13.7mAP,最大33.8倍高速である。
論文 参考訳(メタデータ) (2023-01-10T08:15:35Z) - BEV-MAE: Bird's Eye View Masked Autoencoders for Point Cloud
Pre-training in Autonomous Driving Scenarios [51.285561119993105]
自律運転におけるLiDARに基づく3Dオブジェクト検出のための,効率的なマスク付きオートエンコーダ事前学習フレームワークであるBEV-MAEを提案する。
具体的には、3Dエンコーダ学習特徴表現を導くために,鳥の目視(BEV)誘導マスキング戦略を提案する。
学習可能なポイントトークンを導入し、3Dエンコーダの一貫性のある受容的フィールドサイズを維持する。
論文 参考訳(メタデータ) (2022-12-12T08:15:03Z) - Radar-based Dynamic Occupancy Grid Mapping and Object Detection [55.74894405714851]
近年、古典的占有グリッドマップのアプローチが動的占有グリッドマップに拡張されている。
本稿では,従来のアプローチのさらなる発展について述べる。
複数のレーダセンサのデータを融合し、グリッドベースの物体追跡・マッピング手法を適用する。
論文 参考訳(メタデータ) (2020-08-09T09:26:30Z) - VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized
Representation [74.56282712099274]
本稿では,ベクトルで表される個々の道路成分の空間的局所性を利用する階層型グラフニューラルネットワークであるVectorNetを紹介する。
ベクトル化高定義(HD)マップとエージェントトラジェクトリの操作により、ロッキーなレンダリングや計算集約的なConvNetエンコーディングのステップを避けることができる。
我々は、社内行動予測ベンチマークと最近リリースされたArgoverse予測データセットでVectorNetを評価した。
論文 参考訳(メタデータ) (2020-05-08T19:07:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。