論文の概要: InstaGraM: Instance-level Graph Modeling for Vectorized HD Map Learning
- arxiv url: http://arxiv.org/abs/2301.04470v2
- Date: Thu, 22 Jun 2023 10:12:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-26 17:24:42.868088
- Title: InstaGraM: Instance-level Graph Modeling for Vectorized HD Map Learning
- Title(参考訳): InstaGraM: ベクトル化HDマップ学習のためのインスタンスレベルのグラフモデリング
- Authors: Juyeb Shin, Francois Rameau, Hyeonjun Jeong, Dongsuk Kum
- Abstract要約: 搭載センサ観測からHDマップ要素を検出するオンラインHDマップ学習フレームワークを提案する。
InstaGraMでは、HDマップのインスタンスレベルのグラフモデリングは、正確かつ高速なベクトル化HDマップ学習をもたらす。
提案するネットワークは,従来のモデルよりも最大13.7mAP,最大33.8倍高速である。
- 参考スコア(独自算出の注目度): 6.062751776009753
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inferring traffic object such as lane information is of foremost importance
for deployment of autonomous driving. Previous approaches focus on offline
construction of HD map inferred with GPS localization, which is insufficient
for globally scalable autonomous driving. To alleviate these issues, we propose
online HD map learning framework that detects HD map elements from onboard
sensor observations. We represent the map elements as a graph; we propose
InstaGraM, instance-level graph modeling of HD map that brings accurate and
fast end-to-end vectorized HD map learning. Along with the graph modeling
strategy, we propose end-to-end neural network composed of three stages: a
unified BEV feature extraction, map graph component detection, and association
via graph neural networks. Comprehensive experiments on public open dataset
show that our proposed network outperforms previous models by up to 13.7 mAP
with up to 33.8X faster computation time.
- Abstract(参考訳): 車線情報などの交通オブジェクトを推定することは、自動運転の展開において最重要となる。
従来のアプローチでは,GPS位置推定によるHDマップのオフライン構築に重点を置いていた。
これらの問題を緩和するために,搭載センサ観測からHDマップ要素を検出するオンラインHDマップ学習フレームワークを提案する。
マップ要素をグラフとして表現し,hdマップのインスタンスレベルのグラフモデリングを提案する。
グラフモデリング戦略とともに,統合されたBEV特徴抽出,マップグラフ成分の検出,グラフニューラルネットワークによる関連付けという3段階からなるエンドツーエンドニューラルネットワークを提案する。
公開オープンデータセットにおける包括的実験により,提案するネットワークは,計算時間の最大33.8倍の速度で,最大13.7マップの先行モデルを上回ることがわかった。
関連論文リスト
- TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior [70.84644266024571]
我々は、標準定義地図(SDMaps)を見るために知覚モデルを訓練することを提案する。
我々はSDMap要素をニューラル空間マップ表現やインスタンストークンにエンコードし、先行情報のような補完的な特徴を組み込む。
レーンセグメント表現フレームワークに基づいて、モデルはレーン、中心線、およびそれらのトポロジを同時に予測する。
論文 参考訳(メタデータ) (2024-11-22T06:13:42Z) - Prior Based Online Lane Graph Extraction from Single Onboard Camera
Image [133.68032636906133]
単眼カメラ画像からレーングラフをオンラインに推定する。
前者は、トランスフォーマーベースのWasserstein Autoencoderを通じてデータセットから抽出される。
オートエンコーダは、最初のレーングラフ推定を強化するために使用される。
論文 参考訳(メタデータ) (2023-07-25T08:58:26Z) - Online Map Vectorization for Autonomous Driving: A Rasterization
Perspective [58.71769343511168]
より優れた感度を有し,現実の自律運転シナリオに適した,新化に基づく評価指標を提案する。
また、精度の高い出力に微分可能化を適用し、HDマップの幾何学的監視を行う新しいフレームワークであるMapVR(Map Vectorization via Rasterization)を提案する。
論文 参考訳(メタデータ) (2023-06-18T08:51:14Z) - Neural Map Prior for Autonomous Driving [17.198729798817094]
高精細(HD)セマンティックマップは、自動運転車が都市環境をナビゲートするために不可欠である。
オフラインのHDマップを作成する従来の方法には、労働集約的な手動アノテーションプロセスが含まれる。
近年,オンラインセンサを用いた局所地図作成手法が提案されている。
本研究では,グローバルマップのニューラル表現であるニューラルマッププライオリティ(NMP)を提案する。
論文 参考訳(メタデータ) (2023-04-17T17:58:40Z) - VectorMapNet: End-to-end Vectorized HD Map Learning [18.451587680552464]
本稿では,VectorMapNetと呼ばれるエンドツーエンドのベクトル化HDマップ学習パイプラインを紹介する。
このパイプラインは、地図要素間の空間的関係を明示的にモデル化し、下流の自律運転タスクに相応しいベクトル化されたマップを生成することができる。
VectorMapNetはnuScenesとArgo2データセットの両方で強力なマップ学習性能を実現する。
論文 参考訳(メタデータ) (2022-06-17T17:57:13Z) - Path-Aware Graph Attention for HD Maps in Motion Prediction [4.531240717484252]
自律運転における動作予測の成功は、HDマップからの情報の統合に依存している。
本稿では,2つの頂点間の注意関係を,接続する経路を構成するエッジの列を解析することによって推定する新しい注目アーキテクチャであるPath-Aware Graph Attentionを提案する。
本分析は,GCNのような既存のグラフネットワークが苦戦している現実的な問題において,提案した注意機構が学習を促進する方法を示す。
論文 参考訳(メタデータ) (2022-02-23T09:43:47Z) - HDMapNet: An Online HD Map Construction and Evaluation Framework [23.19001503634617]
HDマップの構築は自動運転にとって重要な問題である。
従来のHDマップは、多くのシナリオでは信頼性の低いセンチメートルレベルの正確な位置決めと結合している。
オンライン地図学習は、自動運転車に先立って意味と幾何学を提供するための、よりスケーラブルな方法である。
論文 参考訳(メタデータ) (2021-07-13T18:06:46Z) - HDMapGen: A Hierarchical Graph Generative Model of High Definition Maps [81.86923212296863]
HDマップは道路路面の正確な定義と交通ルールの豊富な意味を持つ地図である。
実際の道路トポロジやジオメトリはごくわずかで、自動運転スタックをテストする能力は著しく制限されています。
高品質で多様なHDマップを生成可能な階層グラフ生成モデルであるHDMapGenを提案する。
論文 参考訳(メタデータ) (2021-06-28T17:59:30Z) - MP3: A Unified Model to Map, Perceive, Predict and Plan [84.07678019017644]
MP3は、入力が生のセンサーデータと高レベルのコマンドであるマップレス運転に対するエンドツーエンドのアプローチである。
提案手法は, より安全で, 快適であり, 長期クローズループシミュレーションにおいて, ベースラインよりもコマンドを追従できることを示す。
論文 参考訳(メタデータ) (2021-01-18T00:09:30Z) - HDNET: Exploiting HD Maps for 3D Object Detection [99.49035895393934]
高精細度(hd)マップは、現代の3dオブジェクト検出器の性能と頑健性を高める強力な事前情報を提供する。
我々はHDマップから幾何学的特徴と意味的特徴を抽出する単一ステージ検出器を設計する。
地図は至る所では利用できないため、生のLiDARデータからフライ時の地図を推定するマップ予測モジュールも提案する。
論文 参考訳(メタデータ) (2020-12-21T21:59:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。