論文の概要: Improving the Transferability of Adversarial Examples by Feature Augmentation
- arxiv url: http://arxiv.org/abs/2407.06714v1
- Date: Tue, 9 Jul 2024 09:41:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 18:26:46.497677
- Title: Improving the Transferability of Adversarial Examples by Feature Augmentation
- Title(参考訳): 特徴増強による反対例の伝達性の向上
- Authors: Donghua Wang, Wen Yao, Tingsong Jiang, Xiaohu Zheng, Junqi Wu, Xiaoqian Chen,
- Abstract要約: 本稿では,計算コストの増大を伴わずに,対向移動性を向上する簡易かつ効果的な機能拡張攻撃法を提案する。
具体的には、攻撃勾配の多様性を増大させるために、モデルの中間特徴にランダムノイズを注入する。
提案手法は,既存の勾配攻撃と組み合わせることで,さらなる性能向上を図ることができる。
- 参考スコア(独自算出の注目度): 6.600860987969305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the success of input transformation-based attacks on boosting adversarial transferability, the performance is unsatisfying due to the ignorance of the discrepancy across models. In this paper, we propose a simple but effective feature augmentation attack (FAUG) method, which improves adversarial transferability without introducing extra computation costs. Specifically, we inject the random noise into the intermediate features of the model to enlarge the diversity of the attack gradient, thereby mitigating the risk of overfitting to the specific model and notably amplifying adversarial transferability. Moreover, our method can be combined with existing gradient attacks to augment their performance further. Extensive experiments conducted on the ImageNet dataset across CNN and transformer models corroborate the efficacy of our method, e.g., we achieve improvement of +26.22% and +5.57% on input transformation-based attacks and combination methods, respectively.
- Abstract(参考訳): 入力変換ベースの攻撃が敵の転送可能性を高めることに成功しているにもかかわらず、モデル間の不一致が無くなったため、性能は不満足である。
本稿では,計算コストの増大を伴わずに,対向移動性を向上する簡易かつ効果的な機能拡張攻撃法を提案する。
具体的には,攻撃勾配の多様性を増大させるために,モデルの中間的特徴にランダムノイズを注入することにより,特定のモデルに過度に適合するリスクを軽減し,特に対向移動性を増幅する。
さらに,本手法を既存の勾配攻撃と組み合わせることで,さらなる性能向上を図ることができる。
CNNとトランスフォーマーモデルにまたがるImageNetデータセットで実施された大規模な実験により、入力変換ベースの攻撃と組み合わせ手法において、それぞれ+26.22%と+5.57%の改善が達成された。
関連論文リスト
- Bag of Tricks to Boost Adversarial Transferability [5.803095119348021]
ホワイトボックス設定で生成された逆例は、しばしば異なるモデル間で低い転送可能性を示す。
そこで本研究では,既存の敵攻撃の微妙な変化が攻撃性能に大きく影響することを発見した。
既存の敵攻撃の綿密な研究に基づいて、敵の移動性を高めるためのトリックの袋を提案する。
論文 参考訳(メタデータ) (2024-01-16T17:42:36Z) - Enhancing Adversarial Attacks: The Similar Target Method [6.293148047652131]
敵対的な例は、ディープニューラルネットワークのアプリケーションに脅威をもたらす。
ディープニューラルネットワークは敵の例に対して脆弱であり、モデルのアプリケーションに脅威を与え、セキュリティ上の懸念を提起する。
我々はSimisal Target(ST)という類似の攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-08-21T14:16:36Z) - Improving Transferability of Adversarial Examples via Bayesian Attacks [84.90830931076901]
モデル入力にベイズ定式化を組み込むことにより,モデル入力とモデルパラメータの共分散を可能にする新しい拡張を導入する。
提案手法は,トランスファーベース攻撃に対する新たな最先端技術を実現し,ImageNetとCIFAR-10の平均成功率をそれぞれ19.14%,2.08%向上させる。
論文 参考訳(メタデータ) (2023-07-21T03:43:07Z) - Making Substitute Models More Bayesian Can Enhance Transferability of
Adversarial Examples [89.85593878754571]
ディープニューラルネットワークにおける敵の例の転送可能性は多くのブラックボックス攻撃の欠如である。
我々は、望ましい転送可能性を達成するためにベイズモデルを攻撃することを提唱する。
我々の手法は近年の最先端を大きなマージンで上回る。
論文 参考訳(メタデータ) (2023-02-10T07:08:13Z) - Learning to Learn Transferable Attack [77.67399621530052]
転送逆行攻撃は非自明なブラックボックス逆行攻撃であり、サロゲートモデル上で敵の摂動を発生させ、そのような摂動を被害者モデルに適用することを目的としている。
本研究では,データとモデル拡張の両方から学習することで,敵の摂動をより一般化する学習可能な攻撃学習法(LLTA)を提案する。
提案手法の有効性を実証し, 現状の手法と比較して, 12.85%のトランスファー攻撃の成功率で検証した。
論文 参考訳(メタデータ) (2021-12-10T07:24:21Z) - Adaptive Perturbation for Adversarial Attack [50.77612889697216]
そこで本研究では,新たな逆例に対する勾配に基づく攻撃手法を提案する。
逆方向の摂動を発生させるために,スケーリング係数を用いた正確な勾配方向を用いる。
本手法は, 高い伝達性を示し, 最先端の手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2021-11-27T07:57:41Z) - Boosting Transferability of Targeted Adversarial Examples via
Hierarchical Generative Networks [56.96241557830253]
転送ベースの敵攻撃はブラックボックス設定におけるモデルロバスト性を効果的に評価することができる。
本稿では,異なるクラスを対象にした対角的例を生成する条件生成攻撃モデルを提案する。
提案手法は,既存の手法と比較して,標的となるブラックボックス攻撃の成功率を大幅に向上させる。
論文 参考訳(メタデータ) (2021-07-05T06:17:47Z) - Boosting Adversarial Transferability through Enhanced Momentum [50.248076722464184]
深層学習モデルは、人間の知覚できない摂動を良心的なイメージに加えることで、敵の例に弱い。
さまざまな運動量反復勾配に基づく方法が逆転性を改善するのに有効であることが示されている。
本稿では,逆伝達性をさらに高めるために,運動量反復勾配に基づく手法を提案する。
論文 参考訳(メタデータ) (2021-03-19T03:10:32Z) - Random Transformation of Image Brightness for Adversarial Attack [5.405413975396116]
逆の例は、オリジナルの画像に小さな人間の知覚できないものを加えることで作られる。
ディープニューラルネットワークは、オリジナルの画像に小さな人間の知覚できないものを加えることで構築される敵の例に対して脆弱である。
本稿では,高速勾配符号法と統合可能な,この現象に基づく逆例生成手法を提案する。
本手法は,データ拡張に基づく他の攻撃方法よりもブラックボックス攻撃の成功率が高い。
論文 参考訳(メタデータ) (2021-01-12T07:00:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。