論文の概要: Analyzing the Effectiveness of Listwise Reranking with Positional Invariance on Temporal Generalizability
- arxiv url: http://arxiv.org/abs/2407.06716v3
- Date: Mon, 30 Sep 2024 10:49:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 20:15:57.080715
- Title: Analyzing the Effectiveness of Listwise Reranking with Positional Invariance on Temporal Generalizability
- Title(参考訳): 時間的一般化性に対する位置不変性を考慮したリストリグレードの効果の分析
- Authors: Soyoung Yoon, Jongyoon Kim, Seung-won Hwang,
- Abstract要約: 本研究では,静的知識文書における検索性能の学習と実環境における評価の理解のギャップを強調した。
本研究は,時間分布シフトによる不正確性に対処するリストワイズ・アプローチの有効性を実証するものである。
リストワイドリランカでは,Fusion-in-Decoderアーキテクチャを採用することで,ListT5が位置バイアス問題を効果的に軽減できることが示唆された。
- 参考スコア(独自算出の注目度): 20.797306325588153
- License:
- Abstract: This working note outlines our participation in the retrieval task at CLEF 2024. We highlight the considerable gap between studying retrieval performance on static knowledge documents and understanding performance in real-world environments. Therefore, Addressing these discrepancies and measuring the temporal persistence of IR systems is crucial. By investigating the LongEval benchmark, specifically designed for such dynamic environments, our findings demonstrate the effectiveness of a listwise reranking approach, which proficiently handles inaccuracies induced by temporal distribution shifts. Among listwise rerankers, our findings show that ListT5, which effectively mitigates the positional bias problem by adopting the Fusion-in-Decoder architecture, is especially effective, and more so, as temporal drift increases, on the test-long subset.
- Abstract(参考訳): 本稿では,CLEF 2024における検索作業への参加について概説する。
静的知識文書における検索性能の研究と実環境における評価の理解との間には,かなりのギャップがあることを強調した。
したがって、これらの不一致に対処し、IRシステムの時間的持続性を測定することが重要である。
このような動的環境に特化して設計されたLongEvalベンチマークを調べた結果,時間分布シフトによって引き起こされる不正確な処理を適切に行うリストワイド・リグレード・アプローチの有効性が示された。
リストワイド・リランカのうち,Fusion-in-Decoder アーキテクチャを採用することで位置バイアス問題を効果的に緩和する ListT5 が特に有効であり,テスト長部分集合上で時間的ドリフトが増加するにつれて,より効果的であることを示す。
関連論文リスト
- Breaking the Hourglass Phenomenon of Residual Quantization: Enhancing the Upper Bound of Generative Retrieval [16.953923822238455]
ジェネレーティブ検索(GR)は、検索とレコメンデーションシステムにおいて、トランスフォーメーションパラダイムとして登場した。
ホログラス」現象は生成検索におけるRQ-SIDの性能に大きな影響を及ぼす。
本稿では,この問題を軽減し,現実のEコマースアプリケーションにおける生成検索の有効性を高めるための効果的なソリューションを提案する。
論文 参考訳(メタデータ) (2024-07-31T09:52:53Z) - A Thorough Performance Benchmarking on Lightweight Embedding-based Recommender Systems [67.52782366565658]
State-of-the-art recommender system (RS) は、埋め込みベクトルによって符号化される分類的特徴に依存し、結果として非常に大きな埋め込みテーブルとなる。
軽量埋め込み型RSの繁栄にもかかわらず、評価プロトコルには幅広い多様性が見られる。
本研究では, LERSの性能, 効率, クロスタスク転送性について, 徹底的なベンチマークによる検討を行った。
論文 参考訳(メタデータ) (2024-06-25T07:45:00Z) - Synchronous Faithfulness Monitoring for Trustworthy Retrieval-Augmented Generation [96.78845113346809]
Retrieval-augmented Language Model (RALMs) は、知識集約型タスクにおいて、高い性能と幅広い適用性を示している。
本稿では,非偽文の検出に微細な復号力学を利用する軽量モニタであるSynCheckを提案する。
また、長文検索拡張生成のためのビームサーチによって導かれる忠実度指向の復号アルゴリズムであるFODを導入する。
論文 参考訳(メタデータ) (2024-06-19T16:42:57Z) - Position-Aware Parameter Efficient Fine-Tuning Approach for Reducing Positional Bias in LLMs [18.832135309689736]
大規模言語モデル(LLM)の最近の進歩は、長い入力コンテキストを処理する能力を高めている。
近年の研究では、LCMの位置バイアスが示されており、有用な情報の位置に応じて様々な性能を示す。
本研究では,データ拡張手法と効率的なパラメータアダプタを組み合わせた位置認識型PAPEFTアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-01T19:04:17Z) - ACE : Off-Policy Actor-Critic with Causality-Aware Entropy Regularization [52.5587113539404]
因果関係を考慮したエントロピー(entropy)という用語を導入し,効率的な探索を行うための潜在的影響の高いアクションを効果的に識別し,優先順位付けする。
提案アルゴリズムであるACE:Off-policy Actor-critic with Causality-aware Entropy regularizationは,29種類の連続制御タスクに対して,大幅な性能上の優位性を示す。
論文 参考訳(メタデータ) (2024-02-22T13:22:06Z) - Investigating the Robustness of Sequential Recommender Systems Against
Training Data Perturbations [9.463133630647569]
有限ランク付けに適した拡張された類似度であるFinite Rank-Biased Overlap (FRBO)を紹介する。
時間的に順序付けられたシーケンス内の異なる位置におけるアイテムの削除の影響を実験的に検討する。
その結果、シーケンスの最後にアイテムを削除することは、統計的にパフォーマンスに有意な影響を及ぼすことが示された。
論文 参考訳(メタデータ) (2023-07-24T23:26:46Z) - Exploring the Practicality of Generative Retrieval on Dynamic Corpora [41.223804434693875]
本稿では,自己回帰型言語モデルをIR問題に適用する生成検索(GR)に焦点を当てる。
StreamingQAベンチマークの結果、GRは進化的知識(4-11%)に適応し、時間的情報による学習知識が堅牢で、FLOP(x6)、インデックス時間(x6)、ストレージフットプリント(x4)の点で効率的であることが示されている。
本稿では,動的環境における実用的な赤外線システムにおけるGRの可能性について述べる。
論文 参考訳(メタデータ) (2023-05-27T16:05:00Z) - Delayed Reinforcement Learning by Imitation [31.932677462399468]
遅延しない実演から遅延環境での動作方法を学ぶ新しいアルゴリズムを提案する。
各種タスクにおいて,DIDAは顕著なサンプル効率で高い性能が得られることを示す。
論文 参考訳(メタデータ) (2022-05-11T15:27:33Z) - Spatio-temporal Gait Feature with Adaptive Distance Alignment [90.5842782685509]
我々は,ネットワーク構造の最適化と抽出した歩行特徴の洗練という2つの側面から,異なる被験者の歩行特徴の差を増大させようとしている。
提案手法は時空間特徴抽出(SFE)と適応距離アライメント(ADA)から構成される。
ADAは実生活における多数の未ラベルの歩行データをベンチマークとして使用し、抽出した時間的特徴を洗練し、クラス間類似度が低く、クラス内類似度が高いようにしている。
論文 参考訳(メタデータ) (2022-03-07T13:34:00Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
本稿では,データセットバイアスによる負の効果を軽減するために,新しい感情認識ネットワーク(IERN)を提案する。
IERNの有効性を検証する一連の設計されたテストと、3つの感情ベンチマークの実験は、IERNが他の最先端のアプローチよりも優れていることを示した。
論文 参考訳(メタデータ) (2021-07-26T10:40:59Z) - Finding Action Tubes with a Sparse-to-Dense Framework [62.60742627484788]
本稿では,ビデオストリームからのアクションチューブ提案を1つのフォワードパスでスパース・トゥ・デンス方式で生成するフレームワークを提案する。
UCF101-24, JHMDB-21, UCFSportsベンチマークデータセット上で, 本モデルの有効性を評価する。
論文 参考訳(メタデータ) (2020-08-30T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。