Graph-Based Captioning: Enhancing Visual Descriptions by Interconnecting Region Captions
- URL: http://arxiv.org/abs/2407.06723v1
- Date: Tue, 9 Jul 2024 09:55:04 GMT
- Title: Graph-Based Captioning: Enhancing Visual Descriptions by Interconnecting Region Captions
- Authors: Yu-Guan Hsieh, Cheng-Yu Hsieh, Shih-Ying Yeh, Louis Béthune, Hadi Pour Ansari, Pavan Kumar Anasosalu Vasu, Chun-Liang Li, Ranjay Krishna, Oncel Tuzel, Marco Cuturi,
- Abstract summary: Graph-based captioning (GBC) describes an image using a labelled graph structure.
nodes in GBC are created using, in a first stage, object detection and dense captioning tools.
We show that using GBC nodes' annotations results in significant performance boost on downstream models.
- Score: 53.069446715005924
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Humans describe complex scenes with compositionality, using simple text descriptions enriched with links and relationships. While vision-language research has aimed to develop models with compositional understanding capabilities, this is not reflected yet in existing datasets which, for the most part, still use plain text to describe images. In this work, we propose a new annotation strategy, graph-based captioning (GBC) that describes an image using a labelled graph structure, with nodes of various types. The nodes in GBC are created using, in a first stage, object detection and dense captioning tools nested recursively to uncover and describe entity nodes, further linked together in a second stage by highlighting, using new types of nodes, compositions and relations among entities. Since all GBC nodes hold plain text descriptions, GBC retains the flexibility found in natural language, but can also encode hierarchical information in its edges. We demonstrate that GBC can be produced automatically, using off-the-shelf multimodal LLMs and open-vocabulary detection models, by building a new dataset, GBC10M, gathering GBC annotations for about 10M images of the CC12M dataset. We use GBC10M to showcase the wealth of node captions uncovered by GBC, as measured with CLIP training. We show that using GBC nodes' annotations -- notably those stored in composition and relation nodes -- results in significant performance boost on downstream models when compared to other dataset formats. To further explore the opportunities provided by GBC, we also propose a new attention mechanism that can leverage the entire GBC graph, with encouraging experimental results that show the extra benefits of incorporating the graph structure. Our datasets are released at \url{https://huggingface.co/graph-based-captions}.
Related papers
- TEG-DB: A Comprehensive Dataset and Benchmark of Textual-Edge Graphs [14.437863803271808]
Text-Attributed Graphs (TAGs) augment graph structures with natural language descriptions, facilitating detailed depictions of data and their interconnections.
Existing TAG datasets predominantly feature textual information only at the nodes, with edges typically represented by mere binary or categorical attributes.
To address this gap, we introduce Textual-Edge Graphs datasets featuring rich textual descriptions on nodes and edges.
arXiv Detail & Related papers (2024-06-14T06:22:47Z) - Hierarchical Compression of Text-Rich Graphs via Large Language Models [63.75293588479027]
Text-rich graphs are prevalent in data mining contexts like e-commerce and academic graphs.
This paper introduces Hierarchical Compression'' (HiCom), a novel method to align the capabilities of LLMs with the structure of text-rich graphs.
HiCom can outperform both GNNs and LLM backbones for node classification on e-commerce and citation graphs.
arXiv Detail & Related papers (2024-06-13T07:24:46Z) - Open-Vocabulary Camouflaged Object Segmentation [66.94945066779988]
We introduce a new task, open-vocabulary camouflaged object segmentation (OVCOS)
We construct a large-scale complex scene dataset (textbfOVCamo) containing 11,483 hand-selected images with fine annotations and corresponding object classes.
By integrating the guidance of class semantic knowledge and the supplement of visual structure cues from the edge and depth information, the proposed method can efficiently capture camouflaged objects.
arXiv Detail & Related papers (2023-11-19T06:00:39Z) - Pretraining Language Models with Text-Attributed Heterogeneous Graphs [28.579509154284448]
We present a new pretraining framework for Language Models (LMs) that explicitly considers the topological and heterogeneous information in Text-Attributed Heterogeneous Graphs (TAHGs)
We propose a topology-aware pretraining task to predict nodes involved in the context graph by jointly optimizing an LM and an auxiliary heterogeneous graph neural network.
We conduct link prediction and node classification tasks on three datasets from various domains.
arXiv Detail & Related papers (2023-10-19T08:41:21Z) - Empower Text-Attributed Graphs Learning with Large Language Models
(LLMs) [5.920353954082262]
We propose a plug-and-play approach to empower text-attributed graphs through node generation using Large Language Models (LLMs)
We employ an edge predictor to capture the structural information inherent in the raw dataset and integrate the newly generated samples into the original graph.
Experiments demonstrate the outstanding performance of our proposed paradigm, particularly in low-shot scenarios.
arXiv Detail & Related papers (2023-10-15T16:04:28Z) - ConGraT: Self-Supervised Contrastive Pretraining for Joint Graph and Text Embeddings [20.25180279903009]
We propose Contrastive Graph-Text pretraining (ConGraT) for jointly learning separate representations of texts and nodes in a text-attributed graph (TAG)
Our method trains a language model (LM) and a graph neural network (GNN) to align their representations in a common latent space using a batch-wise contrastive learning objective inspired by CLIP.
Experiments demonstrate that ConGraT outperforms baselines on various downstream tasks, including node and text category classification, link prediction, and language modeling.
arXiv Detail & Related papers (2023-05-23T17:53:30Z) - Sequential Graph Convolutional Network for Active Learning [53.99104862192055]
We propose a novel pool-based Active Learning framework constructed on a sequential Graph Convolution Network (GCN)
With a small number of randomly sampled images as seed labelled examples, we learn the parameters of the graph to distinguish labelled vs unlabelled nodes.
We exploit these characteristics of GCN to select the unlabelled examples which are sufficiently different from labelled ones.
arXiv Detail & Related papers (2020-06-18T00:55:10Z) - Say As You Wish: Fine-grained Control of Image Caption Generation with
Abstract Scene Graphs [74.88118535585903]
We propose the Abstract Scene Graph structure to represent user intention in fine-grained level.
From the ASG, we propose a novel ASG2Caption model, which is able to recognise user intentions and semantics in the graph.
Our model achieves better controllability conditioning on ASGs than carefully designed baselines on both VisualGenome and MSCOCO datasets.
arXiv Detail & Related papers (2020-03-01T03:34:07Z) - Modeling Global and Local Node Contexts for Text Generation from
Knowledge Graphs [63.12058935995516]
Recent graph-to-text models generate text from graph-based data using either global or local aggregation.
We propose novel neural models which encode an input graph combining both global and local node contexts.
Our approaches lead to significant improvements on two graph-to-text datasets.
arXiv Detail & Related papers (2020-01-29T18:24:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.