Hierarchical Compression of Text-Rich Graphs via Large Language Models
- URL: http://arxiv.org/abs/2406.11884v1
- Date: Thu, 13 Jun 2024 07:24:46 GMT
- Title: Hierarchical Compression of Text-Rich Graphs via Large Language Models
- Authors: Shichang Zhang, Da Zheng, Jiani Zhang, Qi Zhu, Xiang song, Soji Adeshina, Christos Faloutsos, George Karypis, Yizhou Sun,
- Abstract summary: Text-rich graphs are prevalent in data mining contexts like e-commerce and academic graphs.
This paper introduces Hierarchical Compression'' (HiCom), a novel method to align the capabilities of LLMs with the structure of text-rich graphs.
HiCom can outperform both GNNs and LLM backbones for node classification on e-commerce and citation graphs.
- Score: 63.75293588479027
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text-rich graphs, prevalent in data mining contexts like e-commerce and academic graphs, consist of nodes with textual features linked by various relations. Traditional graph machine learning models, such as Graph Neural Networks (GNNs), excel in encoding the graph structural information, but have limited capability in handling rich text on graph nodes. Large Language Models (LLMs), noted for their superior text understanding abilities, offer a solution for processing the text in graphs but face integration challenges due to their limitation for encoding graph structures and their computational complexities when dealing with extensive text in large neighborhoods of interconnected nodes. This paper introduces ``Hierarchical Compression'' (HiCom), a novel method to align the capabilities of LLMs with the structure of text-rich graphs. HiCom processes text in a node's neighborhood in a structured manner by organizing the extensive textual information into a more manageable hierarchy and compressing node text step by step. Therefore, HiCom not only preserves the contextual richness of the text but also addresses the computational challenges of LLMs, which presents an advancement in integrating the text processing power of LLMs with the structural complexities of text-rich graphs. Empirical results show that HiCom can outperform both GNNs and LLM backbones for node classification on e-commerce and citation graphs. HiCom is especially effective for nodes from a dense region in a graph, where it achieves a 3.48% average performance improvement on five datasets while being more efficient than LLM backbones.
Related papers
- Large Language Model-based Augmentation for Imbalanced Node Classification on Text-Attributed Graphs [13.42259312243504]
We propose a novel approach called LA-TAG (LLM-based Augmentation on Text-Attributed Graphs)
It prompts Large Language Models to generate synthetic texts based on existing node texts in the graph.
To integrate these synthetic text-attributed nodes into the graph, we introduce a text-based link predictor.
arXiv Detail & Related papers (2024-10-22T10:36:15Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
We introduce Graph-aware.
Efficient Fine-Tuning - GPEFT, a novel approach for efficient graph representation learning.
We use a graph neural network (GNN) to encode structural information from neighboring nodes into a graph prompt.
We validate our approach through comprehensive experiments conducted on 8 different text-rich graphs, observing an average improvement of 2% in hit@1 and Mean Reciprocal Rank (MRR) in link prediction evaluations.
arXiv Detail & Related papers (2024-04-28T18:36:59Z) - Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs [60.71360240206726]
Large language models (LLMs) suffer from hallucinations, especially on knowledge-intensive tasks.
Existing works propose to augment LLMs with individual text units retrieved from external knowledge corpora.
We propose a framework called Graph Chain-of-thought (Graph-CoT) to augment LLMs with graphs by encouraging LLMs to reason on the graph iteratively.
arXiv Detail & Related papers (2024-04-10T15:41:53Z) - GraphEdit: Large Language Models for Graph Structure Learning [62.618818029177355]
Graph Structure Learning (GSL) focuses on capturing intrinsic dependencies and interactions among nodes in graph-structured data.
Existing GSL methods heavily depend on explicit graph structural information as supervision signals.
We propose GraphEdit, an approach that leverages large language models (LLMs) to learn complex node relationships in graph-structured data.
arXiv Detail & Related papers (2024-02-23T08:29:42Z) - Large Language Models on Graphs: A Comprehensive Survey [77.16803297418201]
We provide a systematic review of scenarios and techniques related to large language models on graphs.
We first summarize potential scenarios of adopting LLMs on graphs into three categories, namely pure graphs, text-attributed graphs, and text-paired graphs.
We discuss the real-world applications of such methods and summarize open-source codes and benchmark datasets.
arXiv Detail & Related papers (2023-12-05T14:14:27Z) - Which Modality should I use -- Text, Motif, or Image? : Understanding Graphs with Large Language Models [14.251972223585765]
This paper introduces a new approach to encoding a graph with diverse modalities, such as text, image, and motif, and prompts to approximate a graph's global connectivity.
The study also presents GraphTMI, a novel benchmark for evaluating Large Language Models (LLMs) in graph structure analysis.
arXiv Detail & Related papers (2023-11-16T12:45:41Z) - GraphGPT: Graph Instruction Tuning for Large Language Models [27.036935149004726]
Graph Neural Networks (GNNs) have evolved to understand graph structures.
To enhance robustness, self-supervised learning (SSL) has become a vital tool for data augmentation.
Our research tackles this by advancing graph model generalization in zero-shot learning environments.
arXiv Detail & Related papers (2023-10-19T06:17:46Z) - GraphText: Graph Reasoning in Text Space [32.00258972022153]
GraphText is a framework that translates graphs into natural language.
GraphText can achieve on par with, or even surpassing, the performance of supervised-trained graph neural networks.
It paves the way for interactive graph reasoning, allowing both humans and LLMs to communicate with the model seamlessly using natural language.
arXiv Detail & Related papers (2023-10-02T11:03:57Z) - JointGT: Graph-Text Joint Representation Learning for Text Generation
from Knowledge Graphs [44.06715423776722]
We propose a graph-text joint representation learning model called JointGT.
During encoding, we devise a structure-aware semantic aggregation module which is plugged into each Transformer layer.
We show that JointGT obtains new state-of-the-art performance on various KG-to-text datasets.
arXiv Detail & Related papers (2021-06-19T14:10:10Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
We propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models.
With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow.
In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph.
arXiv Detail & Related papers (2021-05-06T12:20:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.