Cybersecurity Defenses: Exploration of CVE Types through Attack Descriptions
- URL: http://arxiv.org/abs/2407.06759v2
- Date: Thu, 11 Jul 2024 11:28:51 GMT
- Title: Cybersecurity Defenses: Exploration of CVE Types through Attack Descriptions
- Authors: Refat Othman, Bruno Rossi, Barbara Russo,
- Abstract summary: VULDAT is a classification tool using a sentence transformer MPNET to identify system vulnerabilities from attack descriptions.
Our model was applied to 100 attack techniques from the ATT&CK repository and 685 issues from the CVE repository.
Our findings indicate that our model achieves the best performance with F1 score of 0.85, Precision of 0.86, and Recall of 0.83.
- Score: 1.0474508494260908
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vulnerabilities in software security can remain undiscovered even after being exploited. Linking attacks to vulnerabilities helps experts identify and respond promptly to the incident. This paper introduces VULDAT, a classification tool using a sentence transformer MPNET to identify system vulnerabilities from attack descriptions. Our model was applied to 100 attack techniques from the ATT&CK repository and 685 issues from the CVE repository. Then, we compare the performance of VULDAT against the other eight state-of-the-art classifiers based on sentence transformers. Our findings indicate that our model achieves the best performance with F1 score of 0.85, Precision of 0.86, and Recall of 0.83. Furthermore, we found 56% of CVE reports vulnerabilities associated with an attack were identified by VULDAT, and 61% of identified vulnerabilities were in the CVE repository.
Related papers
- VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification [49.1574468325115]
Built on RoBERTa, VLAI is fine-tuned on over 600,000 real-world vulnerabilities.<n>The model and dataset are open-source and integrated into the Vulnerability-Lookup service.
arXiv Detail & Related papers (2025-07-04T14:28:14Z) - PoCGen: Generating Proof-of-Concept Exploits for Vulnerabilities in Npm Packages [16.130469984234956]
PoCGen is a novel approach to autonomously generate and validate PoC exploits for vulnerabilities in npm packages.<n>This is the first fully autonomous approach to use large language models (LLMs) in tandem with static and dynamic analysis techniques for PoC exploit generation.
arXiv Detail & Related papers (2025-06-05T12:37:33Z) - CyberGym: Evaluating AI Agents' Cybersecurity Capabilities with Real-World Vulnerabilities at Scale [46.76144797837242]
Large language model (LLM) agents are becoming increasingly skilled at handling cybersecurity tasks autonomously.<n>Existing benchmarks fall short, often failing to capture real-world scenarios or being limited in scope.<n>We introduce CyberGym, a large-scale and high-quality cybersecurity evaluation framework featuring 1,507 real-world vulnerabilities.
arXiv Detail & Related papers (2025-06-03T07:35:14Z) - VADER: A Human-Evaluated Benchmark for Vulnerability Assessment, Detection, Explanation, and Remediation [0.8087612190556891]
VADER comprises 174 real-world software vulnerabilities, each carefully curated from GitHub and annotated by security experts.<n>For each vulnerability case, models are tasked with identifying the flaw, classifying it using Common Weaknession (CWE), explaining its underlying cause, proposing a patch, and formulating a test plan.<n>Using a one-shot prompting strategy, we benchmark six state-of-the-art LLMs (Claude 3.7 Sonnet, Gemini 2.5 Pro, GPT-4.1, GPT-4.5, Grok 3 Beta, and o3) on VADER.<n>Our results show that current state-of-the-
arXiv Detail & Related papers (2025-05-26T01:20:44Z) - AegisLLM: Scaling Agentic Systems for Self-Reflective Defense in LLM Security [74.22452069013289]
AegisLLM is a cooperative multi-agent defense against adversarial attacks and information leakage.
We show that scaling agentic reasoning system at test-time substantially enhances robustness without compromising model utility.
Comprehensive evaluations across key threat scenarios, including unlearning and jailbreaking, demonstrate the effectiveness of AegisLLM.
arXiv Detail & Related papers (2025-04-29T17:36:05Z) - One-for-All Does Not Work! Enhancing Vulnerability Detection by Mixture-of-Experts (MoE) [11.69736955814315]
MoEVD decomposes vulnerability detection into two tasks, CWE type classification and CWE-specific vulnerability detection.
By splitting the task, in vulnerability detection, MoEVD allows specific experts to handle distinct types of vulnerabilities instead of handling all vulnerabilities within one model.
MoEVD excels across almost all CWE types, improving recall over the best SOTA baseline by 9% to 77.8%.
arXiv Detail & Related papers (2025-01-27T19:25:34Z) - There are More Fish in the Sea: Automated Vulnerability Repair via Binary Templates [4.907610470063863]
We propose a template-based automated vulnerability repair approach for Java binaries.
Experiments on the Vul4J dataset demonstrate that TemVUR successfully repairs 11 vulnerabilities.
To assess the generalizability of TemVUR, we curate the ManyVuls4J dataset.
arXiv Detail & Related papers (2024-11-27T06:59:45Z) - CleanVul: Automatic Function-Level Vulnerability Detection in Code Commits Using LLM Heuristics [12.053158610054911]
This paper introduces the first methodology that uses the Large Language Model (LLM) with a enhancement to automatically identify vulnerability-fixing changes from VFCs.
VulSifter was applied to a large-scale study, where we conducted a crawl of 127,063 repositories on GitHub, resulting in the acquisition of 5,352,105 commits.
We then developed CleanVul, a high-quality dataset comprising 11,632 functions using our LLM enhancement approach.
arXiv Detail & Related papers (2024-11-26T09:51:55Z) - Stealthy Jailbreak Attacks on Large Language Models via Benign Data Mirroring [47.40698758003993]
We propose an improved transfer attack method that guides malicious prompt construction by locally training a mirror model of the target black-box model through benign data distillation.
Our approach achieved a maximum attack success rate of 92%, or a balanced value of 80% with an average of 1.5 detectable jailbreak queries per sample against GPT-3.5 Turbo.
arXiv Detail & Related papers (2024-10-28T14:48:05Z) - LLM-Enhanced Static Analysis for Precise Identification of Vulnerable OSS Versions [12.706661324384319]
Open-source software (OSS) has experienced a surge in popularity, attributed to its collaborative development model and cost-effective nature.
The adoption of specific software versions in development projects may introduce security risks when these versions bring along vulnerabilities.
Current methods of identifying vulnerable versions typically analyze and trace the code involved in vulnerability patches using static analysis with pre-defined rules.
This paper presents Vercation, an approach designed to identify vulnerable versions of OSS written in C/C++.
arXiv Detail & Related papers (2024-08-14T06:43:06Z) - VulCatch: Enhancing Binary Vulnerability Detection through CodeT5 Decompilation and KAN Advanced Feature Extraction [2.2602594453321063]
VulCatch is a binary-level vulnerability detection framework.
It transforms raw binary code into pseudocode using CodeT5.
It employs word2vec, Inception Blocks, BiLSTM Attention, and Residual connections to achieve high detection accuracy (98.88%) and precision (97.92%)
arXiv Detail & Related papers (2024-08-13T19:46:50Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - Unveiling Hidden Links Between Unseen Security Entities [3.7138962865789353]
VulnScopper is an innovative approach that utilizes multi-modal representation learning, combining Knowledge Graphs (KG) and Natural Processing (NLP)
We evaluate VulnScopper on two major security datasets, the National Vulnerability Database (NVD) and the Red Hat CVE database.
Our results show that VulnScopper outperforms existing methods, achieving up to 78% Hits@10 accuracy in linking CVEs to Common Vulnerabilities and Exposures (CWEs), and Common Platform Languageions (CPEs)
arXiv Detail & Related papers (2024-03-04T13:14:39Z) - Exploiting Library Vulnerability via Migration Based Automating Test
Generation [16.39796265296833]
In software development, developers extensively utilize third-party libraries to avoid implementing existing functionalities.
Vulnerability exploits, as code snippets provided for reproducing vulnerabilities after disclosure, contain a wealth of vulnerability-related information.
This study proposes a new method based on vulnerability exploits, called VESTA, which provides vulnerability exploit tests as the basis for developers to decide whether to update dependencies.
arXiv Detail & Related papers (2023-12-15T06:46:45Z) - Data-Free Hard-Label Robustness Stealing Attack [67.41281050467889]
We introduce a novel Data-Free Hard-Label Robustness Stealing (DFHL-RS) attack in this paper.
It enables the stealing of both model accuracy and robustness by simply querying hard labels of the target model.
Our method achieves a clean accuracy of 77.86% and a robust accuracy of 39.51% against AutoAttack.
arXiv Detail & Related papers (2023-12-10T16:14:02Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - Adversarial Training with Rectified Rejection [114.83821848791206]
We propose to use true confidence (T-Con) as a certainty oracle, and learn to predict T-Con by rectifying confidence.
We prove that under mild conditions, a rectified confidence (R-Con) rejector and a confidence rejector can be coupled to distinguish any wrongly classified input from correctly classified ones.
arXiv Detail & Related papers (2021-05-31T08:24:53Z) - (De)Randomized Smoothing for Certifiable Defense against Patch Attacks [136.79415677706612]
We introduce a certifiable defense against patch attacks that guarantees for a given image and patch attack size.
Our method is related to the broad class of randomized smoothing robustness schemes.
Our results effectively establish a new state-of-the-art of certifiable defense against patch attacks on CIFAR-10 and ImageNet.
arXiv Detail & Related papers (2020-02-25T08:39:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.