論文の概要: Explicit Modelling of Theory of Mind for Belief Prediction in Nonverbal Social Interactions
- arxiv url: http://arxiv.org/abs/2407.06762v3
- Date: Wed, 28 Aug 2024 11:26:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 20:28:56.918761
- Title: Explicit Modelling of Theory of Mind for Belief Prediction in Nonverbal Social Interactions
- Title(参考訳): 非言語的社会的相互作用における信念予測のための心の理論の明示的モデリング
- Authors: Matteo Bortoletto, Constantin Ruhdorfer, Lei Shi, Andreas Bulling,
- Abstract要約: マルチモーダル入力から人間の社会的相互作用における信念とそのダイナミクスを予測するための、心の理論(ToM)ニューラルネットワークであるMToMnetを提案する。
MToMnetはコンテキストキューを符号化し、個人固有のキュー(人間の視線とボディランゲージ)を、それぞれ個別のMindNetに統合する。
以上の結果から,MToMnetは既存の手法をはるかに上回り,同時にパラメータも大幅に少なくなることが明らかとなった。
- 参考スコア(独自算出の注目度): 9.318796743761224
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose MToMnet - a Theory of Mind (ToM) neural network for predicting beliefs and their dynamics during human social interactions from multimodal input. ToM is key for effective nonverbal human communication and collaboration, yet, existing methods for belief modelling have not included explicit ToM modelling or have typically been limited to one or two modalities. MToMnet encodes contextual cues (scene videos and object locations) and integrates them with person-specific cues (human gaze and body language) in a separate MindNet for each person. Inspired by prior research on social cognition and computational ToM, we propose three different MToMnet variants: two involving fusion of latent representations and one involving re-ranking of classification scores. We evaluate our approach on two challenging real-world datasets, one focusing on belief prediction, while the other examining belief dynamics prediction. Our results demonstrate that MToMnet surpasses existing methods by a large margin while at the same time requiring a significantly smaller number of parameters. Taken together, our method opens up a highly promising direction for future work on artificial intelligent systems that can robustly predict human beliefs from their non-verbal behaviour and, as such, more effectively collaborate with humans.
- Abstract(参考訳): マルチモーダル入力から人間の社会的相互作用における信念とそのダイナミクスを予測するための、心の理論(ToM)ニューラルネットワークであるMToMnetを提案する。
ToMは効果的な非言語的コミュニケーションと協調のための鍵であるが、既存の信念モデリング手法には明示的なToMモデリングが含まれておらず、通常は1つか2つのモダリティに制限されている。
MToMnetは、コンテキストキュー(シーンビデオとオブジェクトロケーション)をエンコードし、個人固有のキュー(人間の視線とボディランゲージ)を、それぞれ個別のMindNetに統合する。
社会的認知とToMに関する先行研究から着想を得て,3種類のMToMnet変異体を提案する。
我々は,2つの現実的データセットに対するアプローチを評価し,その1つは信念の予測に焦点を当て,もう1つは信念のダイナミクスの予測について検討した。
以上の結果から,MToMnetは既存の手法をはるかに上回り,同時にパラメータも大幅に少なくなることが明らかとなった。
そこで本手法は,非言語的行動から人間の信念を強く予測し,人間とより効果的に協力することのできる,人工知能システムの将来的な研究に向けて,極めて有望な方向を導出する。
関連論文リスト
- Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - NegotiationToM: A Benchmark for Stress-testing Machine Theory of Mind on Negotiation Surrounding [55.38254464415964]
現在、マインド評価の理論は、機械生成データやゲーム設定を用いたテストモデルに焦点を合わせており、ショートカットや素早い相関が生じる傾向にある。
我々は,多次元精神状態を取り巻く実世界の交渉において,ストレステストマシンToMのための新しいベンチマークであるNegotiationToMを紹介する。
論文 参考訳(メタデータ) (2024-04-21T11:51:13Z) - What if...?: Thinking Counterfactual Keywords Helps to Mitigate Hallucination in Large Multi-modal Models [50.97705264224828]
大規模マルチモーダルモデルに反現実的思考を組み込む新しい手法である反現実的インセプションを提案する。
我々は、より広い文脈のシーン理解にまたがる応答をモデルが関与し、生成することを目指している。
オープンソースモデルとプロプライエタリモデルの両方を含む様々なLMMの包括的分析は、反事実的思考が幻覚を著しく減少させることを裏付ける。
論文 参考訳(メタデータ) (2024-03-20T11:27:20Z) - MMToM-QA: Multimodal Theory of Mind Question Answering [80.87550820953236]
心の理論 (ToM) は人間レベルの社会知能を持つ機械を開発する上で不可欠な要素である。
最近の機械学習モデル、特に大きな言語モデルは、ToM理解のいくつかの側面を示しているようだ。
一方、ヒューマンToMはビデオやテキストの理解以上のものです。
人は、利用可能なデータから抽出された概念的表現に基づいて、他人の心について柔軟に推論することができる。
論文 参考訳(メタデータ) (2024-01-16T18:59:24Z) - Think Twice: Perspective-Taking Improves Large Language Models'
Theory-of-Mind Capabilities [63.90227161974381]
SimToMは、シミュレーション理論の視点取りの概念にインスパイアされた、新しいプロンプトフレームワークである。
我々のアプローチは、追加のトレーニングや最小限のプロンプトチューニングを必要とせず、既存の手法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-11-16T22:49:27Z) - Multimodality and Attention Increase Alignment in Natural Language
Prediction Between Humans and Computational Models [0.8139163264824348]
人間は、次の単語の処理を容易にするために、視覚的手がかりのような健全なマルチモーダル機能を使用することが知られている。
マルチモーダル計算モデルは、視覚的注意機構を使用して視覚的および言語的データを統合して、次の単語の確率を割り当てることができる。
本研究では,人間からの予測可能性の推定値が,マルチモーダルモデルと非モーダルモデルとのスコアとより密に一致していることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:30:07Z) - A Review on Machine Theory of Mind [16.967933605635203]
心の理論(りょうがく、英: Theory of Mind、ToM)とは、人間の認知の基盤である他者に対する精神状態の属性付け能力である。
本稿では,機械ToMにおける信念,欲求,意図に関する最近の進歩を概観する。
論文 参考訳(メタデータ) (2023-03-21T04:58:47Z) - Multimodal foundation models are better simulators of the human brain [65.10501322822881]
1500万の画像テキストペアを事前訓練した,新たに設計されたマルチモーダル基礎モデルを提案する。
視覚的エンコーダも言語的エンコーダもマルチモーダルで訓練され,脳に近いことが判明した。
論文 参考訳(メタデータ) (2022-08-17T12:36:26Z) - BOSS: A Benchmark for Human Belief Prediction in Object-context
Scenarios [14.23697277904244]
本稿では,人間と自律システム間の協調を促進させる手法を検討するために,心の理論(ToM)とオブジェクトコンテキスト関係(Object-Context Relations)の複合知識を利用する。
本稿では、人工知能(AI)システムによる、オブジェクトコンテキストシナリオにおける人間の信念状態の予測能力を評価するための、新しい、かつ挑戦的なマルチモーダルビデオデータセットを提案する。
論文 参考訳(メタデータ) (2022-06-21T18:29:17Z) - Deep Interpretable Models of Theory of Mind For Human-Agent Teaming [0.7734726150561086]
我々は、他の観測対象の意図をモデル化するための解釈可能なモジュラー・ニューラル・フレームワークを開発する。
Minecraftの検索および救助タスクで、人間の参加者のデータに関する実験を行い、アプローチの有効性を実証します。
論文 参考訳(メタデータ) (2021-04-07T06:18:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。