論文の概要: Countermeasures Against Adversarial Examples in Radio Signal Classification
- arxiv url: http://arxiv.org/abs/2407.06796v1
- Date: Tue, 9 Jul 2024 12:08:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 18:07:16.755858
- Title: Countermeasures Against Adversarial Examples in Radio Signal Classification
- Title(参考訳): 無線信号分類における逆例対策
- Authors: Lu Zhang, Sangarapillai Lambotharan, Gan Zheng, Basil AsSadhan, Fabio Roli,
- Abstract要約: 変調分類における逆例に対する対策を初めて提案する。
提案手法は,ディープラーニングに基づく変調分類システムを敵の例から保護できることを示す。
- 参考スコア(独自算出の注目度): 22.491016049845083
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning algorithms have been shown to be powerful in many communication network design problems, including that in automatic modulation classification. However, they are vulnerable to carefully crafted attacks called adversarial examples. Hence, the reliance of wireless networks on deep learning algorithms poses a serious threat to the security and operation of wireless networks. In this letter, we propose for the first time a countermeasure against adversarial examples in modulation classification. Our countermeasure is based on a neural rejection technique, augmented by label smoothing and Gaussian noise injection, that allows to detect and reject adversarial examples with high accuracy. Our results demonstrate that the proposed countermeasure can protect deep-learning based modulation classification systems against adversarial examples.
- Abstract(参考訳): ディープラーニングアルゴリズムは、自動変調分類を含む多くの通信ネットワーク設計問題において強力であることが示されている。
しかし、敵例と呼ばれる慎重な攻撃に対して脆弱である。
したがって、ディープラーニングアルゴリズムへの無線ネットワークの依存は、無線ネットワークのセキュリティと運用に深刻な脅威をもたらす。
本稿では,変調分類における逆例に対する対策として,初めて提案する。
本対策は,ラベルスムース化とガウスノイズ注入により強化されたニューラルリジェクション技術に基づいて,高い精度で敵のサンプルを検出し,拒否することができる。
提案手法は,ディープラーニングに基づく変調分類システムを敵の例から保護できることを示す。
関連論文リスト
- A Robust Defense against Adversarial Attacks on Deep Learning-based
Malware Detectors via (De)Randomized Smoothing [4.97719149179179]
本稿では,(デ)ランダム化平滑化に触発された敵のマルウェアに対する現実的な防御法を提案する。
本研究では,マルウェア作者が挿入した敵対的コンテンツを,バイトの関連部分集合を選択することでサンプリングする可能性を減らす。
論文 参考訳(メタデータ) (2024-02-23T11:30:12Z) - Towards an Accurate and Secure Detector against Adversarial
Perturbations [58.02078078305753]
敵の摂動に対するディープニューラルネットワークの脆弱性は、コンピュータビジョンコミュニティで広く認識されている。
現在のアルゴリズムは、通常、自然・人工データの識別的分解を通じて、敵対的なパターンを検出する。
本研究では,秘密鍵を用いた空間周波数判別分解に基づく,高精度かつセキュアな対向検波器を提案する。
論文 参考訳(メタデータ) (2023-05-18T10:18:59Z) - Mixture GAN For Modulation Classification Resiliency Against Adversarial
Attacks [55.92475932732775]
本稿では,GANをベースとした新たな生成逆ネットワーク(Generative Adversarial Network, GAN)を提案する。
GANベースの目的は、DNNベースの分類器に入力する前に、敵の攻撃例を排除することである。
シミュレーションの結果,DNNをベースとしたAMCの精度が約81%に向上する可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-29T22:30:32Z) - Evaluation of Neural Networks Defenses and Attacks using NDCG and
Reciprocal Rank Metrics [6.6389732792316]
分類タスクにおけるニューラルネットワークの出力に対する攻撃効果、防衛効果の回復効果を特に測定するために設計された2つの指標を示す。
正規化された累積ゲインと、情報検索文献で使用される相互ランクの指標に着想を得て、ニューラルネットワーク予測を結果のランクリストとして扱う。
一般的な分類指標と比較すると,提案指標は優れた情報的・独特性を示す。
論文 参考訳(メタデータ) (2022-01-10T12:54:45Z) - Towards Defending against Adversarial Examples via Attack-Invariant
Features [147.85346057241605]
ディープニューラルネットワーク(DNN)は敵の雑音に弱い。
敵の強靭性は、敵の例を利用して改善することができる。
目に見えない種類の敵の例に基づいて訓練されたモデルは、一般的に、目に見えない種類の敵の例にうまく一般化できない。
論文 参考訳(メタデータ) (2021-06-09T12:49:54Z) - Adversarial Attacks and Mitigation for Anomaly Detectors of
Cyber-Physical Systems [6.417955560857806]
本研究では,CPSの異常検出器とルールチェッカーを同時に回避する対向攻撃を提案する。
既存の勾配に基づくアプローチにインスパイアされた我々の敵攻撃は、センサーとアクチュエーターの値にノイズを発生させ、遺伝的アルゴリズムを使って後者を最適化する。
実世界の2つの重要なインフラテストベッドに対するアプローチを実装し、検出器の分類精度を平均50%以上下げることに成功した。
論文 参考訳(メタデータ) (2021-05-22T12:19:03Z) - Improving Transformation-based Defenses against Adversarial Examples
with First-order Perturbations [16.346349209014182]
研究によると、ニューラルネットワークは敵の攻撃を受けやすい。
これにより、ニューラルネットワークベースのインテリジェントシステムに対する潜在的な脅威が露呈する。
本稿では, 対向性強靭性を改善するために, 対向性摂動に対処する手法を提案する。
論文 参考訳(メタデータ) (2021-03-08T06:27:24Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Adversarial Attacks on Deep Learning Based Power Allocation in a Massive
MIMO Network [62.77129284830945]
本稿では,大規模なマルチインプット・マルチアウトプット(MAMIMO)ネットワークのダウンリンクにおいて,逆攻撃がDLベースの電力割り当てを損なう可能性があることを示す。
我々はこれらの攻撃のパフォーマンスをベンチマークし、ニューラルネットワーク(NN)の入力に小さな摂動がある場合、ホワイトボックス攻撃は最大86%まで実現不可能な解決策をもたらすことを示した。
論文 参考訳(メタデータ) (2021-01-28T16:18:19Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z) - Detecting Adversarial Examples for Speech Recognition via Uncertainty
Quantification [21.582072216282725]
機械学習システム、特に自動音声認識(ASR)システムは、敵の攻撃に対して脆弱である。
本稿では,ハイブリッドASRシステムに着目し,攻撃時の不確実性を示す能力に関する4つの音響モデルを比較した。
我々は、受信演算子曲線スコア0.99以上の領域の逆例を検出することができる。
論文 参考訳(メタデータ) (2020-05-24T19:31:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。