論文の概要: Cue Point Estimation using Object Detection
- arxiv url: http://arxiv.org/abs/2407.06823v1
- Date: Tue, 9 Jul 2024 12:56:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 18:07:16.729408
- Title: Cue Point Estimation using Object Detection
- Title(参考訳): 物体検出を用いたキューポイント推定
- Authors: Giulia Argüello, Luca A. Lanzendörfer, Roger Wattenhofer,
- Abstract要約: キューポイントは、DJミキシングにおける2つの音楽間の遷移における時間的境界を示す。
本稿では,コンピュータビジョンオブジェクト検出タスクとして解釈された自動キューポイント推定手法を提案する。
提案システムは,学習済みの物体検出変換器をベースとして,新しいキューポイントデータセットを微調整する。
- 参考スコア(独自算出の注目度): 20.706469085872516
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cue points indicate possible temporal boundaries in a transition between two pieces of music in DJ mixing and constitute a crucial element in autonomous DJ systems as well as for live mixing. In this work, we present a novel method for automatic cue point estimation, interpreted as a computer vision object detection task. Our proposed system is based on a pre-trained object detection transformer which we fine-tune on our novel cue point dataset. Our provided dataset contains 21k manually annotated cue points from human experts as well as metronome information for nearly 5k individual tracks, making this dataset 35x larger than the previously available cue point dataset. Unlike previous methods, our approach does not require low-level musical information analysis, while demonstrating increased precision in retrieving cue point positions. Moreover, our proposed method demonstrates high adherence to phrasing, a type of high-level music structure commonly emphasized in electronic dance music. The code, model checkpoints, and dataset are made publicly available.
- Abstract(参考訳): キューポイントは、DJミキシングにおける2つの音楽間の遷移における時間的境界を示し、自律的なDJシステムにおいて重要な要素であり、ライブミキシングのためのものである。
本研究では,コンピュータビジョンオブジェクト検出タスクとして解釈された自動キューポイント推定手法を提案する。
提案システムは,学習済みの物体検出変換器をベースとして,新しいキューポイントデータセットを微調整する。
提供されたデータセットには、人の専門家による21kの注釈付きキューポイントと、約5kの個々のトラックのメトロノーム情報が含まれており、このデータセットは、以前利用可能なキューポイントデータセットよりも35倍大きい。
従来手法とは異なり,提案手法では低レベル音楽情報解析は必要としなかった。
さらに,提案手法は,電子ダンス音楽で一般的に強調されるハイレベルな音楽構造である,フレーズの忠実性を示す。
コード、モデルチェックポイント、データセットが公開されている。
関連論文リスト
- Toward a More Complete OMR Solution [49.74172035862698]
光音楽認識は、音楽の表記をデジタル形式に変換することを目的としている。
OMRに取り組む1つのアプローチは、画像内の視覚音楽の表記要素を最初に検出するマルチステージパイプラインである。
YOLOv8に基づく音楽オブジェクト検出器を導入し,検出性能を向上する。
第2に、検出出力に基づいて記法組立段階を完了する教師付きトレーニングパイプラインを導入する。
論文 参考訳(メタデータ) (2024-08-31T01:09:12Z) - V-DETR: DETR with Vertex Relative Position Encoding for 3D Object
Detection [73.37781484123536]
DETRフレームワークを用いた点雲のための高性能な3次元物体検出器を提案する。
限界に対処するため,新しい3次元相対位置(3DV-RPE)法を提案する。
挑戦的なScanNetV2ベンチマークで例外的な結果を示す。
論文 参考訳(メタデータ) (2023-08-08T17:14:14Z) - Objects as Spatio-Temporal 2.5D points [5.588892124219713]
本研究では,ネットワークの単一フィードフォワードパスにおける2次元物体検出シーンの深度予測を協調学習することにより,物体の3次元位置を推定する弱い教師付き手法を提案する。
提案手法は,単点型オブジェクト検出装置を拡張し,各オブジェクトを時間的にBEVとしてモデル化し,クエリ時に3DやBEVアノテーションやLiDARデータを必要としない新しいオブジェクト表現を提案する。
論文 参考訳(メタデータ) (2022-12-06T05:14:30Z) - SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object
Detection [78.90102636266276]
SASA(Semantics-Augmented Set Abstraction)と呼ばれる新しい集合抽象化手法を提案する。
そこで本研究では, 推定点前景スコアに基づいて, より重要な前景点の維持を支援するセマンティックス誘導点サンプリングアルゴリズムを提案する。
実際には、SASAは、前景オブジェクトに関連する貴重な点を識別し、ポイントベースの3D検出のための特徴学習を改善するのに有効である。
論文 参考訳(メタデータ) (2022-01-06T08:54:47Z) - Few-Shot Keypoint Detection as Task Adaptation via Latent Embeddings [17.04471874483516]
既存のアプローチでは、1つのフォワードパスに密なキーポイントの埋め込みを計算するか、その全容量をスパースポイントのセットに割り当てる。
本稿では,ある時点における関連点数が典型的には少ないという観測に基づいて,中間点を探索する。
私たちの主な貢献は、キーポイント埋め込みでスパーススタイルのネットワークを条件付けることができる、少数ショットタスク適応にインスパイアされた、新しいアーキテクチャです。
論文 参考訳(メタデータ) (2021-12-09T13:25:42Z) - Pretrained equivariant features improve unsupervised landmark discovery [69.02115180674885]
我々は、この課題を克服する2段階の教師なしアプローチを、強力なピクセルベースの特徴を初めて学習することによって定式化する。
本手法は,いくつかの難解なランドマーク検出データセットにおいて最先端の結果を生成する。
論文 参考訳(メタデータ) (2021-04-07T05:42:11Z) - A Self-Training Approach for Point-Supervised Object Detection and
Counting in Crowds [54.73161039445703]
本稿では,ポイントレベルのアノテーションのみを用いて訓練された典型的なオブジェクト検出を可能にする,新たな自己学習手法を提案する。
トレーニング中、利用可能なポイントアノテーションを使用して、オブジェクトの中心点の推定を監督する。
実験の結果,本手法は検出タスクとカウントタスクの両方において,最先端のポイント管理手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2020-07-25T02:14:42Z) - Point-Set Anchors for Object Detection, Instance Segmentation and Pose
Estimation [85.96410825961966]
中心点から抽出された画像の特徴は、離れたキーポイントや境界ボックスの境界を予測するための限られた情報を含んでいると論じる。
推論を容易にするために,より有利な位置に配置された点集合からの回帰を行うことを提案する。
我々は、オブジェクト検出、インスタンス分割、人間のポーズ推定にPoint-Set Anchorsと呼ばれるこのフレームワークを適用した。
論文 参考訳(メタデータ) (2020-07-06T15:59:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。