論文の概要: Toward a More Complete OMR Solution
- arxiv url: http://arxiv.org/abs/2409.00316v1
- Date: Sat, 31 Aug 2024 01:09:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 15:37:00.769485
- Title: Toward a More Complete OMR Solution
- Title(参考訳): より完全なOMRソリューションを目指して
- Authors: Guang Yang, Muru Zhang, Lin Qiu, Yanming Wan, Noah A. Smith,
- Abstract要約: 光音楽認識は、音楽の表記をデジタル形式に変換することを目的としている。
OMRに取り組む1つのアプローチは、画像内の視覚音楽の表記要素を最初に検出するマルチステージパイプラインである。
YOLOv8に基づく音楽オブジェクト検出器を導入し,検出性能を向上する。
第2に、検出出力に基づいて記法組立段階を完了する教師付きトレーニングパイプラインを導入する。
- 参考スコア(独自算出の注目度): 49.74172035862698
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optical music recognition (OMR) aims to convert music notation into digital formats. One approach to tackle OMR is through a multi-stage pipeline, where the system first detects visual music notation elements in the image (object detection) and then assembles them into a music notation (notation assembly). Most previous work on notation assembly unrealistically assumes perfect object detection. In this study, we focus on the MUSCIMA++ v2.0 dataset, which represents musical notation as a graph with pairwise relationships among detected music objects, and we consider both stages together. First, we introduce a music object detector based on YOLOv8, which improves detection performance. Second, we introduce a supervised training pipeline that completes the notation assembly stage based on detection output. We find that this model is able to outperform existing models trained on perfect detection output, showing the benefit of considering the detection and assembly stages in a more holistic way. These findings, together with our novel evaluation metric, are important steps toward a more complete OMR solution.
- Abstract(参考訳): 光音楽認識(OMR)は、音楽の表記をデジタル形式に変換することを目的としている。
OMRに取り組むためのアプローチの1つは、マルチステージパイプラインを通じて、システムはまず画像内の視覚的音楽の表記要素を検知し(オブジェクト検出)、次にそれらを音楽の記法(記法アセンブリ)に組み立てる。
記法アセンブリに関するこれまでのほとんどの研究は、非現実的に完璧なオブジェクト検出を前提としていた。
本研究では,検出された音楽オブジェクト間のペア関係を持つグラフとして音楽表記を表現したMUSCIMA++ v2.0データセットに着目し,両ステージを一緒に検討する。
まず, YOLOv8に基づく音楽オブジェクト検出器を導入し, 検出性能を向上する。
第2に、検出出力に基づいて記法組立段階を完了する教師付きトレーニングパイプラインを導入する。
このモデルは, 完全検出出力で訓練された既存モデルよりも優れており, より包括的に検出と組立の段階を考慮する利点が示される。
これらの知見は、我々の新しい評価基準とともに、より完全なOMRソリューションに向けた重要なステップである。
関連論文リスト
- Knowledge Discovery in Optical Music Recognition: Enhancing Information Retrieval with Instance Segmentation [0.0]
光音楽認識(OMR)は、画像からMusicXML、MEI、MIDIなどの機械可読フォーマットに音符の書き起こしを自動化する。
本研究では,MAsk R-CNNを用いたサンプルセグメンテーションを適用してOMRにおける知識発見について検討し,楽譜における記号の検出とデライン化を強化する。
論文 参考訳(メタデータ) (2024-08-27T12:34:41Z) - Cue Point Estimation using Object Detection [20.706469085872516]
キューポイントは、DJミキシングにおける2つの音楽間の遷移における時間的境界を示す。
本稿では,コンピュータビジョンオブジェクト検出タスクとして解釈された自動キューポイント推定手法を提案する。
提案システムは,学習済みの物体検出変換器をベースとして,新しいキューポイントデータセットを微調整する。
論文 参考訳(メタデータ) (2024-07-09T12:56:30Z) - Practical End-to-End Optical Music Recognition for Pianoform Music [3.69298824193862]
私たちはLinearized MusicXMLと呼ばれるシーケンシャルなフォーマットを定義します。
我々は,OpenScore Lieder corpus に基づいて MusicXML をベースとしたベンチマーク型セット OMR を作成する。
データセットのベースラインとして機能し、TEDnメトリックを使用してモデルを評価するために、エンドツーエンドモデルをトレーニングし、微調整する。
論文 参考訳(メタデータ) (2024-03-20T17:26:22Z) - A Unified Representation Framework for the Evaluation of Optical Music Recognition Systems [4.936226952764696]
共通の音楽表現言語の必要性を特定し,MTNフォーマットを提案する。
この形式は、音楽を高吸収ノードにまとめるプリミティブの集合として表現する。
また,この概念の実証として,特定のOMRメトリックセットとタイプセットスコアデータセットを開発した。
論文 参考訳(メタデータ) (2023-12-20T10:45:22Z) - Early Action Recognition with Action Prototypes [62.826125870298306]
本稿では,各クラスに対するフルアクションのプロトタイプ表現を学習する新しいモデルを提案する。
映像を短いクリップに分解し、視覚エンコーダがそれぞれのクリップから特徴を独立して抽出する。
その後、デコーダは、最終クラスの予測のために、すべてのクリップからオンラインのファッション機能として集約される。
論文 参考訳(メタデータ) (2023-12-11T18:31:13Z) - MARBLE: Music Audio Representation Benchmark for Universal Evaluation [79.25065218663458]
我々は,UniversaL Evaluation(MARBLE)のための音楽音響表現ベンチマークを紹介する。
音響、パフォーマンス、スコア、ハイレベルな記述を含む4つの階層レベルを持つ包括的分類を定義することで、様々な音楽情報検索(MIR)タスクのベンチマークを提供することを目的としている。
次に、8つの公開データセット上の14のタスクに基づいて統一されたプロトコルを構築し、ベースラインとして音楽録音で開発されたすべてのオープンソース事前学習モデルの表現を公平かつ標準的に評価する。
論文 参考訳(メタデータ) (2023-06-18T12:56:46Z) - Unified Visual Relationship Detection with Vision and Language Models [89.77838890788638]
この研究は、複数のデータセットからラベル空間の結合を予測する単一の視覚的関係検出器のトレーニングに焦点を当てている。
視覚と言語モデルを活用した統合視覚関係検出のための新しいボトムアップ手法UniVRDを提案する。
人物体間相互作用検出とシーングラフ生成の双方による実験結果から,本モデルの競合性能が示された。
論文 参考訳(メタデータ) (2023-03-16T00:06:28Z) - Exploring the Efficacy of Pre-trained Checkpoints in Text-to-Music
Generation Task [86.72661027591394]
テキスト記述から完全で意味論的に一貫したシンボリック音楽の楽譜を生成する。
テキスト・音楽生成タスクにおける自然言語処理のための公開チェックポイントの有効性について検討する。
実験結果から, BLEUスコアと編集距離の類似性において, 事前学習によるチェックポイントの使用による改善が統計的に有意であることが示唆された。
論文 参考訳(メタデータ) (2022-11-21T07:19:17Z) - 1st Place Solution to ECCV-TAO-2020: Detect and Represent Any Object for
Tracking [19.15537335764895]
従来のトラッキング・バイ・検出パラダイムを、このトラッキング・バイ・オブジェクトタスクに拡張します。
特徴学習ネットワークを訓練することで,あらゆる対象を表す出現特徴を学習する。
類似の外観機能とトラックレットレベルのポストアソシエーションモジュールを備えたシンプルなリンク戦略が最終的に最終追跡結果を生成するために適用されます。
論文 参考訳(メタデータ) (2021-01-20T09:42:32Z) - Music Gesture for Visual Sound Separation [121.36275456396075]
ミュージック・ジェスチャ(Music Gesture)は、音楽演奏時の演奏者の身体と指の動きを明示的にモデル化するキーポイントに基づく構造化表現である。
まず、コンテキスト対応グラフネットワークを用いて、視覚的コンテキストと身体力学を統合し、その後、身体の動きと対応する音声信号とを関連付けるために、音声-視覚融合モデルを適用する。
論文 参考訳(メタデータ) (2020-04-20T17:53:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。