Safe-Embed: Unveiling the Safety-Critical Knowledge of Sentence Encoders
- URL: http://arxiv.org/abs/2407.06851v1
- Date: Tue, 9 Jul 2024 13:35:54 GMT
- Title: Safe-Embed: Unveiling the Safety-Critical Knowledge of Sentence Encoders
- Authors: Jinseok Kim, Jaewon Jung, Sangyeop Kim, Sohyung Park, Sungzoon Cho,
- Abstract summary: Unsafe prompts pose a significant threat to Large Language Models (LLMs)
This paper investigates the potential of sentence encoders to distinguish safe from unsafe prompts.
We introduce new pairwise datasets and the Categorical Purity metric to measure this capability.
- Score: 5.070104802923903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the impressive capabilities of Large Language Models (LLMs) in various tasks, their vulnerability to unsafe prompts remains a critical issue. These prompts can lead LLMs to generate responses on illegal or sensitive topics, posing a significant threat to their safe and ethical use. Existing approaches attempt to address this issue using classification models, but they have several drawbacks. With the increasing complexity of unsafe prompts, similarity search-based techniques that identify specific features of unsafe prompts provide a more robust and effective solution to this evolving problem. This paper investigates the potential of sentence encoders to distinguish safe from unsafe prompts, and the ability to classify various unsafe prompts according to a safety taxonomy. We introduce new pairwise datasets and the Categorical Purity (CP) metric to measure this capability. Our findings reveal both the effectiveness and limitations of existing sentence encoders, proposing directions to improve sentence encoders to operate as more robust safety detectors. Our code is available at https://github.com/JwdanielJung/Safe-Embed.
Related papers
- Root Defence Strategies: Ensuring Safety of LLM at the Decoding Level [10.658844160259104]
Large language models (LLMs) have demonstrated immense utility across various industries.
As LLMs advance, the risk of harmful outputs increases due to incorrect or malicious instruction prompts.
This paper examines the LLMs' capability to recognize harmful outputs, revealing and quantifying their proficiency in assessing the danger of previous tokens.
arXiv Detail & Related papers (2024-10-09T12:09:30Z) - Multimodal Situational Safety [73.63981779844916]
We present the first evaluation and analysis of a novel safety challenge termed Multimodal Situational Safety.
For an MLLM to respond safely, whether through language or action, it often needs to assess the safety implications of a language query within its corresponding visual context.
We develop the Multimodal Situational Safety benchmark (MSSBench) to assess the situational safety performance of current MLLMs.
arXiv Detail & Related papers (2024-10-08T16:16:07Z) - Can You Trust Your Metric? Automatic Concatenation-Based Tests for Metric Validity [9.355471292024061]
GPT-based harmfulness detection metrics exhibit decision-flipping phenomenon.
Even an advanced metric like GPT-4o is highly sensitive to input order.
arXiv Detail & Related papers (2024-08-22T09:57:57Z) - Nothing in Excess: Mitigating the Exaggerated Safety for LLMs via Safety-Conscious Activation Steering [56.92068213969036]
Safety alignment is indispensable for Large language models (LLMs) to defend threats from malicious instructions.
Recent researches reveal safety-aligned LLMs prone to reject benign queries due to the exaggerated safety issue.
We propose a Safety-Conscious Activation Steering (SCANS) method to mitigate the exaggerated safety concerns.
arXiv Detail & Related papers (2024-08-21T10:01:34Z) - SafeInfer: Context Adaptive Decoding Time Safety Alignment for Large Language Models [5.6874111521946356]
Safety-aligned language models often exhibit fragile and imbalanced safety mechanisms.
We propose SafeInfer, a context-adaptive, decoding-time safety alignment strategy.
HarmEval is a novel benchmark for extensive safety evaluations.
arXiv Detail & Related papers (2024-06-18T05:03:23Z) - Towards Comprehensive and Efficient Post Safety Alignment of Large Language Models via Safety Patching [77.36097118561057]
textscSafePatching is a novel framework for comprehensive and efficient PSA.
textscSafePatching achieves a more comprehensive and efficient PSA than baseline methods.
arXiv Detail & Related papers (2024-05-22T16:51:07Z) - CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion [117.178835165855]
This paper introduces CodeAttack, a framework that transforms natural language inputs into code inputs.
Our studies reveal a new and universal safety vulnerability of these models against code input.
We find that a larger distribution gap between CodeAttack and natural language leads to weaker safety generalization.
arXiv Detail & Related papers (2024-03-12T17:55:38Z) - On Prompt-Driven Safeguarding for Large Language Models [172.13943777203377]
We find that in the representation space, the input queries are typically moved by safety prompts in a "higher-refusal" direction.
Inspired by these findings, we propose a method for safety prompt optimization, namely DRO.
Treating a safety prompt as continuous, trainable embeddings, DRO learns to move the queries' representations along or opposite the refusal direction, depending on their harmfulness.
arXiv Detail & Related papers (2024-01-31T17:28:24Z) - Can LLMs Patch Security Issues? [1.3299507495084417]
Large Language Models (LLMs) have shown impressive proficiency in code generation.
LLMs share a weakness with their human counterparts: producing code that inadvertently has security vulnerabilities.
We propose Feedback-Driven Security Patching (FDSP), where LLMs automatically refine generated, vulnerable code.
arXiv Detail & Related papers (2023-11-13T08:54:37Z) - Certifying LLM Safety against Adversarial Prompting [75.19953634352258]
Large language models (LLMs) are vulnerable to adversarial attacks that add malicious tokens to an input prompt.
We introduce erase-and-check, the first framework for defending against adversarial prompts with certifiable safety guarantees.
arXiv Detail & Related papers (2023-09-06T04:37:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.