論文の概要: DRL-AdaPart: DRL-Driven Adaptive STAR-RIS Partitioning for Fair and Frugal Resource Utilization
- arxiv url: http://arxiv.org/abs/2407.06868v2
- Date: Sat, 26 Jul 2025 09:30:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:55.268646
- Title: DRL-AdaPart: DRL-Driven Adaptive STAR-RIS Partitioning for Fair and Frugal Resource Utilization
- Title(参考訳): DRL-AdaPart: DRL-Driven Adaptive STAR-RIS Partitioning for Fair and Frugal Resource utilization (特集 バイオサイバネティックスとバイオサイバネティックス)
- Authors: Ashok S. Kumar, Nancy Nayak, Sheetal Kalyani, Himal A. Suraweera,
- Abstract要約: ユーザ毎に割り当てられるSTAR-RIS要素の個数を決定する。
本研究は,STAR-RISの位相シフトと地下配置変数の位相シフトを,適切に調整された深部強化学習(DRL)アルゴリズムを用いて最適化する。
DRLモデルにはペナルティ項が組み込まれ、必要がなければSTAR-RIS要素をインテリジェントに非活性化することにより資源利用が促進される。
- 参考スコア(独自算出の注目度): 10.497111272905917
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this work, we propose a method for efficient resource utilization of simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) elements to ensure fair and high data rates. We introduce a subsurface assignment variable that determines the number of STAR-RIS elements allocated to each user and maximizes the sum of the data rates by jointly optimizing the phase shifts of the STAR-RIS and the subsurface assignment variables using an appropriately tailored deep reinforcement learning (DRL) algorithm. The proposed DRL method is also compared with a Dinkelbach algorithm and the designed hybrid DRL approach. A penalty term is incorporated into the DRL model to enhance resource utilization by intelligently deactivating STAR-RIS elements when not required. The proposed DRL method can achieve fair and high data rates for static and mobile users while ensuring efficient resource utilization through extensive simulations. Using the proposed DRL method, up to 27% and 21% of STAR-RIS elements can be deactivated in static and mobile scenarios, respectively, without affecting performance.
- Abstract(参考訳): 本研究では,再構成可能なインテリジェントサーフェス (STAR-RIS) 要素を同時に送信・反映し,公平かつ高いデータレートを確保するための効率的な資源利用手法を提案する。
本稿では,STAR-RISの位相シフトを適切に調整した深部強化学習(DRL)アルゴリズムを用いて,各ユーザに対して割り当てられたSTAR-RIS要素の数を決定し,STAR-RISの位相シフトを最適化することにより,データレートの和を最大化する地下代入変数を提案する。
提案手法はDinkelbachアルゴリズムや設計したハイブリッドDRL手法と比較される。
DRLモデルにはペナルティ項が組み込まれ、必要がなければSTAR-RIS要素をインテリジェントに非活性化することにより資源利用が促進される。
提案手法は,静的およびモバイルユーザに対して,広範囲なシミュレーションによる効率的な資源利用を確保しつつ,公平かつ高いデータレートを達成することができる。
DRL法を用いて,STAR-RIS要素の最大27%と21%を静的シナリオと移動シナリオで有効にすることができる。
関連論文リスト
- Fewer May Be Better: Enhancing Offline Reinforcement Learning with Reduced Dataset [29.573555134322543]
オフライン強化学習(RL)により、エージェントは環境とのさらなるインタラクションなしに、事前にコンパイルされたデータセットから学習することができる。
オフラインRLにおける重要な課題は、オフラインデータセットの最適なサブセットを選択することだ。
本稿では、勾配近似最適化問題としてデータセット選択をフレーム化するReDORを提案する。
論文 参考訳(メタデータ) (2025-02-26T09:08:47Z) - Enhancing Spectrum Efficiency in 6G Satellite Networks: A GAIL-Powered Policy Learning via Asynchronous Federated Inverse Reinforcement Learning [67.95280175998792]
ビームフォーミング,スペクトルアロケーション,リモートユーザ機器(RUE)アソシエイトを最適化するために,GAILを利用した新しいポリシー学習手法を提案する。
手動チューニングなしで報酬関数を自動的に学習するために、逆RL(IRL)を用いる。
提案手法は従来のRL手法よりも優れており,コンバージェンスと報酬値の14.6%の改善が達成されている。
論文 参考訳(メタデータ) (2024-09-27T13:05:02Z) - D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning [99.33607114541861]
ロボット操作と移動環境の現実的なシミュレーションに焦点を当てたオフラインRLのための新しいベンチマークを提案する。
提案するベンチマークでは、状態ベースドメインと画像ベースドメインを対象とし、オフラインRLとオンライン微調整評価の両方をサポートしている。
論文 参考訳(メタデータ) (2024-08-15T22:27:00Z) - Multi-Agent Deep Reinforcement Learning for Energy Efficient Multi-Hop STAR-RIS-Assisted Transmissions [9.462149599416263]
マルチホップSTAR-RISの新たなアーキテクチャを提案し、より広い範囲のフルプレーンサービスカバレッジを実現する。
提案アーキテクチャは,モードスイッチングベースのSTAR-RISや従来のRIS,RISやSTAR-RISを使わずに展開するよりも高いエネルギー効率を実現する。
論文 参考訳(メタデータ) (2024-07-26T09:35:50Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
非直交多重アクセス(Noma)により、複数のユーザが同じ周波数帯域を共有でき、同時に再構成可能なインテリジェントサーフェス(STAR-RIS)を送信および反射することができる。
STAR-RISを屋内に展開することは、干渉緩和、電力消費、リアルタイム設定における課題を提示する。
複数のアクセスポイント(AP)、STAR-RIS、NOMAを利用した新しいネットワークアーキテクチャが屋内通信のために提案されている。
論文 参考訳(メタデータ) (2024-06-19T07:17:04Z) - ArCHer: Training Language Model Agents via Hierarchical Multi-Turn RL [80.10358123795946]
大規模言語モデルを微調整するためのマルチターンRLアルゴリズムを構築するためのフレームワークを開発する。
我々のフレームワークは階層的なRLアプローチを採用し、2つのRLアルゴリズムを並列に実行している。
実験により,ArCHerはエージェントタスクの効率と性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-02-29T18:45:56Z) - Scalable Volt-VAR Optimization using RLlib-IMPALA Framework: A
Reinforcement Learning Approach [11.11570399751075]
本研究は, 深層強化学習(DRL)の可能性を活用した新しい枠組みを提案する。
DRLエージェントをRAYプラットフォームに統合することにより、RAYのリソースを効率的に利用してシステム適応性と制御を改善する新しいフレームワークであるRLlib-IMPALAの開発が容易になる。
論文 参考訳(メタデータ) (2024-02-24T23:25:35Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - Safe and Accelerated Deep Reinforcement Learning-based O-RAN Slicing: A
Hybrid Transfer Learning Approach [20.344810727033327]
我々は,DRLをベースとしたO-RANスライシングにおいて,安全かつ迅速な収束を実現するためのハイブリッドTL支援手法を提案し,設計する。
提案されたハイブリッドアプローチは、少なくとも7.7%と20.7%は、平均的な初期報酬値と収束シナリオの割合を改善している。
論文 参考訳(メタデータ) (2023-09-13T18:58:34Z) - Dual Generator Offline Reinforcement Learning [90.05278061564198]
オフラインのRLでは、学習したポリシーをデータに近づき続けることが不可欠である。
実際には、GANベースのオフラインRL法は代替手法と同様に実行されていない。
2つのジェネレータを持つことにより、有効なGANベースのオフラインRL法が実現されるだけでなく、サポート制約を近似することも示している。
論文 参考訳(メタデータ) (2022-11-02T20:25:18Z) - Deep Black-Box Reinforcement Learning with Movement Primitives [15.184283143878488]
深部強化学習のための新しいアルゴリズムを提案する。
これは、政治的に成功したディープRLアルゴリズムである、微分可能な信頼領域層に基づいている。
複雑なロボット制御タスクにおいて,ERLアルゴリズムと最先端のステップベースアルゴリズムを比較した。
論文 参考訳(メタデータ) (2022-10-18T06:34:52Z) - DRL Enabled Coverage and Capacity Optimization in STAR-RIS Assisted
Networks [55.0821435415241]
無線通信における新たなパラダイムとして,STAR-RISのカバレッジとキャパシティ性能の分析が不可欠だが難しい。
STAR-RIS支援ネットワークにおけるカバレッジとキャパシティ最適化の問題を解決するために,多目的ポリシー最適化(MO-PPO)アルゴリズムを提案する。
MO-PPOアルゴリズムの性能向上のために、アクション値ベースの更新戦略(AVUS)と損失関数ベースの更新戦略(LFUS)の2つの更新戦略を検討した。
論文 参考訳(メタデータ) (2022-09-01T14:54:36Z) - Towards Deployment-Efficient Reinforcement Learning: Lower Bound and
Optimality [141.89413461337324]
展開効率は、強化学習(RL)の多くの実世界の応用にとって重要な基準である
本稿では,「制約付き最適化」の観点から,デプロイ効率の高いRL(DE-RL)の理論的定式化を提案する。
論文 参考訳(メタデータ) (2022-02-14T01:31:46Z) - Energy-Efficient Design for a NOMA assisted STAR-RIS Network with Deep
Reinforcement Learning [78.50920340621677]
同時送信・再構成可能なインテリジェントサーフェス(STAR-RIS)は、無線ネットワークの性能を高めるための有望な補助装置であると考えられている。
本稿では,非直交多重アクセス(NOMA)ネットワークにおけるエネルギー効率(EE)問題について検討する。
基地局の送信ビームフォーミングベクトルとSTAR-RISの勾配行列を協調的に最適化することにより,EEを最大化する。
論文 参考訳(メタデータ) (2021-11-30T15:01:19Z) - DRL-based Slice Placement Under Non-Stationary Conditions [0.8459686722437155]
我々は,非定常プロセスに従ってスライス要求が到着するという仮定の下で,最適ネットワークスライス配置のためのオンライン学習を検討する。
具体的には、2つの純DRLアルゴリズムと2つのハイブリッドDRLヒューリスティックアルゴリズムを提案する。
提案したハイブリッドDRLヒューリスティックアルゴリズムは、収束を達成するために、純DRLよりも少ない3桁の学習エピソードを必要とすることを示す。
論文 参考訳(メタデータ) (2021-08-05T10:05:12Z) - Critic Regularized Regression [70.8487887738354]
批判正規化回帰(CRR)形式を用いてデータからポリシーを学習するための新しいオフラインRLアルゴリズムを提案する。
CRRは驚くほどよく動作し、高次元の状態と行動空間を持つタスクにスケールする。
論文 参考訳(メタデータ) (2020-06-26T17:50:26Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent Reflecting Surface (IRS)は、マルチアンテナアクセスポイント(AP)から受信機へのダウンリンク情報伝達を支援する有望な技術である。
我々は、APのアクティブビームフォーミングとIRSのパッシブビームフォーミングを共同最適化することで、APの送信電力を最小化する。
過去の経験からビームフォーミング戦略に適応できる深層強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T01:42:55Z) - D4RL: Datasets for Deep Data-Driven Reinforcement Learning [119.49182500071288]
オフラインRLのリアルタイムアプリケーションに関連するデータセットのキープロパティによってガイドされるオフライン設定用に特別に設計されたベンチマークを紹介する。
部分的に訓練されたRLエージェントによって収集された単純なベンチマークタスクやデータを超えて、既存のアルゴリズムの重要かつ未承認な欠陥を明らかにする。
論文 参考訳(メタデータ) (2020-04-15T17:18:19Z) - Stacked Auto Encoder Based Deep Reinforcement Learning for Online
Resource Scheduling in Large-Scale MEC Networks [44.40722828581203]
オンラインリソーススケジューリングフレームワークは、IoT(Internet of Things)の全ユーザに対して、重み付けされたタスクレイテンシの総和を最小化するために提案されている。
以下を含む深層強化学習(DRL)に基づく解法を提案する。
DRLがポリシーネットワークをトレーニングし、最適なオフロードポリシーを見つけるのを支援するために、保存および優先されたエクスペリエンスリプレイ(2p-ER)を導入する。
論文 参考訳(メタデータ) (2020-01-24T23:01:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。