論文の概要: ProtoSAM: One-Shot Medical Image Segmentation With Foundational Models
- arxiv url: http://arxiv.org/abs/2407.07042v2
- Date: Thu, 18 Jul 2024 07:58:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 20:12:48.436345
- Title: ProtoSAM: One-Shot Medical Image Segmentation With Foundational Models
- Title(参考訳): ProtoSAM:基礎モデルによるワンショットの医用画像セグメンテーション
- Authors: Lev Ayzenberg, Raja Giryes, Hayit Greenspan,
- Abstract要約: ProtoSAMは、ワンショットの医療画像セグメンテーションのための新しいフレームワークである。
これは、数ショットセグメンテーションで知られているプロトタイプネットワークと、自然画像基盤モデルSAMの併用である。
- 参考スコア(独自算出の注目度): 29.781228739479893
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work introduces a new framework, ProtoSAM, for one-shot medical image segmentation. It combines the use of prototypical networks, known for few-shot segmentation, with SAM - a natural image foundation model. The method proposed creates an initial coarse segmentation mask using the ALPnet prototypical network, augmented with a DINOv2 encoder. Following the extraction of an initial mask, prompts are extracted, such as points and bounding boxes, which are then input into the Segment Anything Model (SAM). State-of-the-art results are shown on several medical image datasets and demonstrate automated segmentation capabilities using a single image example (one shot) with no need for fine-tuning of the foundation model. Our code is available at: https://github.com/levayz/ProtoSAM
- Abstract(参考訳): この研究は、ワンショットの医療画像セグメンテーションのための新しいフレームワーク、ProtoSAMを紹介した。
これは、数ショットセグメンテーションで知られているプロトタイプネットワークと、自然画像基盤モデルSAMの併用である。
提案手法は,DINOv2エンコーダを付加したALPnetのプロトタイプネットワークを用いて,初期粗いセグメンテーションマスクを生成する。
初期マスクの抽出後、ポイントやバウンディングボックスなどのプロンプトが抽出され、Segment Anything Model(SAM)に入力される。
最先端の結果は、いくつかの医療画像データセットに示され、基礎モデルの微調整を必要とせずに、単一の画像例(ワンショット)を使用して、自動セグメンテーション機能を示す。
私たちのコードは、https://github.com/levayz/ProtoSAMで利用可能です。
関連論文リスト
- Automating MedSAM by Learning Prompts with Weak Few-Shot Supervision [10.609371657347806]
本研究は,入力プロンプトの条件付けを,画像埋め込みから直接プロンプト埋め込みを学習する軽量モジュールに置き換えることを提案する。
本手法は,医療用画像に微調整したSAMのバージョンであるMedSAMを用いて検証した。
論文 参考訳(メタデータ) (2024-09-30T13:53:01Z) - Prompting Segment Anything Model with Domain-Adaptive Prototype for Generalizable Medical Image Segmentation [49.5901368256326]
医用画像のセグメンテーションにおけるセグメンテーションモデル(DAPSAM)の微調整のための新しいドメイン適応型プロンプトフレームワークを提案する。
DAPSAMは,2つの医療画像分割タスクにおいて,異なるモダリティで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-09-19T07:28:33Z) - Pathological Primitive Segmentation Based on Visual Foundation Model with Zero-Shot Mask Generation [3.5177988631063486]
本稿では,SAMの学習済み自然画像エンコーダを検出ベース領域提案に適用する手法を提案する。
SAMというベースフレームワーク全体は、追加のトレーニングや微調整を必要としないが、病理学における2つの基本的なセグメンテーションタスクに対してエンドツーエンドの結果をもたらす可能性がある。
論文 参考訳(メタデータ) (2024-04-12T16:29:49Z) - SamDSK: Combining Segment Anything Model with Domain-Specific Knowledge
for Semi-Supervised Learning in Medical Image Segmentation [27.044797468878837]
Segment Anything Model (SAM)は、自然画像に広範囲のオブジェクトを分割する機能を示す。
本稿では、SAMとドメイン固有の知識を組み合わせて、ラベルなし画像の信頼性の高い利用法を提案する。
本研究は,医用画像セグメンテーションのための半教師あり学習の新たな方向性を創出する。
論文 参考訳(メタデータ) (2023-08-26T04:46:10Z) - TomoSAM: a 3D Slicer extension using SAM for tomography segmentation [62.997667081978825]
TomoSAMは、最先端のSegment Anything Model(SAM)を3Dスライダに統合するために開発された。
SAMは、オブジェクトを識別し、ゼロショットで画像マスクを作成することができる、迅速なディープラーニングモデルである。
これらのツール間のシナジーは、トモグラフィや他のイメージング技術からの複雑な3Dデータセットのセグメンテーションに役立つ。
論文 参考訳(メタデータ) (2023-06-14T16:13:27Z) - AutoSAM: Adapting SAM to Medical Images by Overloading the Prompt
Encoder [101.28268762305916]
この作業では、Segment Anything Modelを同じ入力イメージで動作するエンコーダに置き換える。
複数の医用画像とビデオのベンチマークで最先端の結果を得る。
内部の知識を検査し、軽量なセグメンテーションソリューションを提供するために、浅いデコンボリューションネットワークによってマスクに復号化することを学ぶ。
論文 参考訳(メタデータ) (2023-06-10T07:27:00Z) - DeSAM: Decoupled Segment Anything Model for Generalizable Medical Image Segmentation [22.974876391669685]
Segment Anything Model (SAM) は、医用画像セグメンテーションのクロスドメインロバスト性を改善する可能性を示している。
SAMは手動でトリガーする時よりも、自動セグメンテーションのシナリオで大幅にパフォーマンスが低下する。
Decoupled SAMはSAMのマスクデコーダを2つの新しいモジュールを導入して変更する。
論文 参考訳(メタデータ) (2023-06-01T09:49:11Z) - Personalize Segment Anything Model with One Shot [52.54453744941516]
我々は,Segment Anything Model (SAM) のためのトレーニング不要なパーソナライズ手法を提案する。
PerSAMは、参照マスクを持つ1つのイメージしか持たないため、最初にターゲットのコンセプトを以前のロケーションでローカライズする。
PerSAMは、ターゲット誘導された注意、ターゲットセマンティックなプロンプト、そしてカスケードされたポストリファインメントという3つのテクニックを通じて、他の画像やビデオにセグメントする。
論文 参考訳(メタデータ) (2023-05-04T17:59:36Z) - Input Augmentation with SAM: Boosting Medical Image Segmentation with
Segmentation Foundation Model [36.015065439244495]
Segment Anything Model (SAM) はコンピュータビジョンタスクのための汎用セグメンテーションのための大規模モデルである。
SAMは100万枚の画像と10億枚以上のマスクを使って訓練され、自然の風景画像に広範囲のオブジェクトのセグメンテーション結果を生成することができる。
本報告では,SAMは医用画像データに高品質なセグメンテーションを提供していないが,その生成マスク,特徴,安定性スコアは,より優れた医用画像セグメンテーションモデルの構築と訓練に有用であることを示す。
論文 参考訳(メタデータ) (2023-04-22T07:11:53Z) - Distilling Ensemble of Explanations for Weakly-Supervised Pre-Training
of Image Segmentation Models [54.49581189337848]
本稿では,分類データセットに基づく画像分割モデルのエンドツーエンド事前学習を可能にする手法を提案する。
提案手法は重み付きセグメンテーション学習法を利用して,重み付きセグメンテーションネットワークを事前訓練する。
実験の結果,ImageNetにソースデータセットとしてPSSLを伴って提案されたエンドツーエンドの事前トレーニング戦略が,さまざまなセグメンテーションモデルの性能向上に成功していることがわかった。
論文 参考訳(メタデータ) (2022-07-04T13:02:32Z) - CRNet: Cross-Reference Networks for Few-Shot Segmentation [59.85183776573642]
少ないショットセグメンテーションは、少数のトレーニングイメージを持つ新しいクラスに一般化できるセグメンテーションモデルを学ぶことを目的としている。
相互参照機構により、我々のネットワークは2つの画像に共起する物体をよりよく見つけることができる。
PASCAL VOC 2012データセットの実験は、我々のネットワークが最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2020-03-24T04:55:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。