論文の概要: CAPformer: Compression-Aware Pre-trained Transformer for Low-Light Image Enhancement
- arxiv url: http://arxiv.org/abs/2407.07056v1
- Date: Tue, 9 Jul 2024 17:25:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 17:07:48.263644
- Title: CAPformer: Compression-Aware Pre-trained Transformer for Low-Light Image Enhancement
- Title(参考訳): CAPformer: 低照度画像強調のための圧縮対応事前学習トランス
- Authors: Wang Wei, Jin Zhi,
- Abstract要約: 低照度画像強調(LLIE)は携帯電話の撮影需要の急増とともに進歩しているが、既存の多くの方法では圧縮を無視している。
本研究では,JPEG圧縮が低照度画像に与える影響について検討し,暗黒領域の低画素値の広さによるJPEGによる重大な情報損失を明らかにした。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-Light Image Enhancement (LLIE) has advanced with the surge in phone photography demand, yet many existing methods neglect compression, a crucial concern for resource-constrained phone photography. Most LLIE methods overlook this, hindering their effectiveness. In this study, we investigate the effects of JPEG compression on low-light images and reveal substantial information loss caused by JPEG due to widespread low pixel values in dark areas. Hence, we propose the Compression-Aware Pre-trained Transformer (CAPformer), employing a novel pre-training strategy to learn lossless information from uncompressed low-light images. Additionally, the proposed Brightness-Guided Self-Attention (BGSA) mechanism enhances rational information gathering. Experiments demonstrate the superiority of our approach in mitigating compression effects on LLIE, showcasing its potential for improving LLIE in resource-constrained scenarios.
- Abstract(参考訳): 低照度画像強調(LLIE)は携帯電話の撮影需要の急増とともに進歩しているが、既存の多くの方法では圧縮を無視している。
ほとんどのLLIEメソッドはこれを見落とし、その有効性を妨げている。
本研究では,JPEG圧縮が低照度画像に与える影響について検討し,暗黒領域の低画素値の広さによるJPEGによる重大な情報損失を明らかにした。
そこで本研究では,非圧縮低照度画像からロスレス情報を学習するために,新しい事前学習戦略を取り入れたCompression-Aware Pre-trained Transformer (CAPformer)を提案する。
さらに、BGSA(Brightness-Guided Self-Attention)機構は、合理的な情報収集を促進する。
LLIEの圧縮効果を軽減し,資源制約のあるシナリオにおいてLLIEを改善する可能性を示す実験を行った。
関連論文リスト
- CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
低照度画像強調(LLIE)は、低照度画像を改善することを目的としている。
既存の手法では、様々な明るさ劣化からの回復の不確実性と、テクスチャと色情報の喪失という2つの課題に直面している。
我々は、量子化された先行値と画像の精細化を利用して、新しいエンハンスメント手法、CodeEnhanceを提案する。
論文 参考訳(メタデータ) (2024-04-08T07:34:39Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural
Image Compression [62.888755394395716]
本研究は、最適な視覚的忠実度のために設計された強化されたニューラル圧縮手法を提案する。
我々は,洗練されたセマンティック・アンサンブル・ロス,シャルボニエ・ロス,知覚的損失,スタイル・ロス,非バイナリ・ディバイザ・ロスを組み込んだモデルを構築した。
実験により,本手法は神経画像圧縮の統計的忠実度を著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-01-25T08:11:27Z) - Transferable Learned Image Compression-Resistant Adversarial
Perturbations [69.79762292033553]
敵対的攻撃は容易に画像分類システムを破壊し、DNNベースの認識タスクの脆弱性を明らかにする。
我々は、学習した画像圧縮機を前処理モジュールとして利用する画像分類モデルをターゲットにした新しいパイプラインを提案する。
論文 参考訳(メタデータ) (2024-01-06T03:03:28Z) - Make Lossy Compression Meaningful for Low-Light Images [26.124632089007523]
低照度画像の圧縮率と高精細化性能を同時に達成する新しいジョイントソリューションを提案する。
我々は,主エンハンスメント分岐と信号-雑音比(SNR)対応分岐を含むエンドツーエンドのトレーニング可能なアーキテクチャを設計する。
論文 参考訳(メタデータ) (2023-05-24T11:14:40Z) - Multi-Modality Deep Network for JPEG Artifacts Reduction [33.02405073842042]
テキスト誘導JPEGアーティファクト削減のためのマルチモーダル融合学習法を提案する。
提案手法は,最先端の手法と比較して,より優れたデブロッキング結果が得られる。
論文 参考訳(メタデータ) (2023-05-04T11:54:02Z) - Crowd Counting on Heavily Compressed Images with Curriculum Pre-Training [90.76576712433595]
ディープニューラルネットワークによって処理された画像に損失圧縮を適用することで、大幅な精度低下につながる可能性がある。
カリキュラム学習のパラダイムに着想を得て,圧縮画像の群集カウントのためのカリキュラム事前学習(CPT)と呼ばれる新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2022-08-15T08:43:21Z) - Analyzing and Mitigating JPEG Compression Defects in Deep Learning [69.04777875711646]
本稿では,JPEG圧縮が共通タスクやデータセットに与える影響を統一的に検討する。
高圧縮の一般的なパフォーマンス指標には大きなペナルティがあることが示される。
論文 参考訳(メタデータ) (2020-11-17T20:32:57Z) - Early Exit or Not: Resource-Efficient Blind Quality Enhancement for
Compressed Images [54.40852143927333]
ロスシー画像圧縮は、通信帯域を節約するために広範に行われ、望ましくない圧縮アーティファクトをもたらす。
圧縮画像に対する資源効率の高いブラインド品質向上手法(RBQE)を提案する。
提案手法は, 評価された画像の品質に応じて, 自動的にエンハンスメントを終了するか, 継続するかを決定することができる。
論文 参考訳(メタデータ) (2020-06-30T07:38:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。