Hyperion - A fast, versatile symbolic Gaussian Belief Propagation framework for Continuous-Time SLAM
- URL: http://arxiv.org/abs/2407.07074v1
- Date: Tue, 9 Jul 2024 17:46:53 GMT
- Title: Hyperion - A fast, versatile symbolic Gaussian Belief Propagation framework for Continuous-Time SLAM
- Authors: David Hug, Ignacio Alzugaray, Margarita Chli,
- Abstract summary: We present the fastest SymForce-based [Martiros et al., RSS 2022] B- and Z-Spline implementations achieving speedups between 2.43x and 110.31x over Sommer et al.
We demonstrate the efficacy of our method in motion tracking and localization settings, complemented by empirical ablation studies.
- Score: 9.083886529257857
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Continuous-Time Simultaneous Localization And Mapping (CTSLAM) has become a promising approach for fusing asynchronous and multi-modal sensor suites. Unlike discrete-time SLAM, which estimates poses discretely, CTSLAM uses continuous-time motion parametrizations, facilitating the integration of a variety of sensors such as rolling-shutter cameras, event cameras and Inertial Measurement Units (IMUs). However, CTSLAM approaches remain computationally demanding and are conventionally posed as centralized Non-Linear Least Squares (NLLS) optimizations. Targeting these limitations, we not only present the fastest SymForce-based [Martiros et al., RSS 2022] B- and Z-Spline implementations achieving speedups between 2.43x and 110.31x over Sommer et al. [CVPR 2020] but also implement a novel continuous-time Gaussian Belief Propagation (GBP) framework, coined Hyperion, which targets decentralized probabilistic inference across agents. We demonstrate the efficacy of our method in motion tracking and localization settings, complemented by empirical ablation studies.
Related papers
- AsynEIO: Asynchronous Monocular Event-Inertial Odometry Using Gaussian Process Regression [7.892365588256595]
We introduce a monocular event-inertial odometry method called AsynEIO, designed to fuse asynchronous event and inertial data.
We show that AsynEIO outperforms existing methods, especially in high-speed and low-illumination scenarios.
arXiv Detail & Related papers (2024-11-19T02:39:57Z) - Cross Space and Time: A Spatio-Temporal Unitized Model for Traffic Flow Forecasting [16.782154479264126]
Predicting backbone-temporal traffic flow presents challenges due to complex interactions between temporal factors.
Existing approaches address these dimensions in isolation, neglecting their critical interdependencies.
In this paper, we introduce Sanonymous-Temporal Unitized Unitized Cell (ASTUC), a unified framework designed to capture both spatial and temporal dependencies.
arXiv Detail & Related papers (2024-11-14T07:34:31Z) - Distributed Stochastic Gradient Descent with Staleness: A Stochastic Delay Differential Equation Based Framework [56.82432591933544]
Distributed gradient descent (SGD) has attracted considerable recent attention due to its potential for scaling computational resources, reducing training time, and helping protect user privacy in machine learning.
This paper presents the run time and staleness of distributed SGD based on delay differential equations (SDDEs) and the approximation of gradient arrivals.
It is interestingly shown that increasing the number of activated workers does not necessarily accelerate distributed SGD due to staleness.
arXiv Detail & Related papers (2024-06-17T02:56:55Z) - DASA: Delay-Adaptive Multi-Agent Stochastic Approximation [64.32538247395627]
We consider a setting in which $N$ agents aim to speedup a common Approximation problem by acting in parallel and communicating with a central server.
To mitigate the effect of delays and stragglers, we propose textttDASA, a Delay-Adaptive algorithm for multi-agent Approximation.
arXiv Detail & Related papers (2024-03-25T22:49:56Z) - Spatio-temporal Diffusion Point Processes [23.74522530140201]
patio-temporal point process (STPP) is a collection of events accompanied with time and space.
The failure to model the joint distribution leads to limited capacities in characterizing the pasthua-temporal interactions given events.
We propose a novel parameterization framework, which learns complex spatial-temporal joint distributions.
Our framework outperforms the state-of-the-art baselines remarkably, with an average improvement over 50%.
arXiv Detail & Related papers (2023-05-21T08:53:00Z) - Beyond Exponentially Fast Mixing in Average-Reward Reinforcement
Learning via Multi-Level Monte Carlo Actor-Critic [61.968469104271676]
We propose an RL methodology attuned to the mixing time by employing a multi-level Monte Carlo estimator for the critic, the actor, and the average reward embedded within an actor-critic (AC) algorithm.
We experimentally show that these alleviated restrictions on the technical conditions required for stability translate to superior performance in practice for RL problems with sparse rewards.
arXiv Detail & Related papers (2023-01-28T04:12:56Z) - Continuous-Time vs. Discrete-Time Vision-based SLAM: A Comparative Study [46.89180519082908]
This work systematically compares the advantages and limitations of the two formulations in vision-based SLAM.
We develop, and open source, a modular and efficient software architecture containing state-of-the-art algorithms to solve the SLAM problem in discrete and continuous time.
arXiv Detail & Related papers (2022-02-17T20:42:06Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
We propose a dissipative extension of Dirac's theory of constrained Hamiltonian systems as a general framework for solving optimization problems.
Our class of (accelerated) algorithms are not only simple and efficient but also applicable to a broad range of contexts.
arXiv Detail & Related papers (2021-07-23T13:43:34Z) - On The Verification of Neural ODEs with Stochastic Guarantees [14.490826225393096]
We show that Neural ODEs, an emerging class of timecontinuous neural networks, can be verified by solving a set of global-optimization problems.
We introduce Lagran Reachability ( SLR), an abstraction-based technique for constructing a tight Reachtube.
arXiv Detail & Related papers (2020-12-16T11:04:34Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
We propose a novel optimization backbone for visual SLAM systems.
We leverage averaging to improve the accuracy, efficiency and robustness of conventional monocular SLAM systems.
Our approach can exhibit up to 10x faster with comparable accuracy against the state-art on public benchmarks.
arXiv Detail & Related papers (2020-11-02T18:02:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.