論文の概要: Cardinality-Aware Set Prediction and Top-$k$ Classification
- arxiv url: http://arxiv.org/abs/2407.07140v1
- Date: Tue, 9 Jul 2024 17:57:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 20:39:53.103849
- Title: Cardinality-Aware Set Prediction and Top-$k$ Classification
- Title(参考訳): 心的集合予測とTop-$k$分類
- Authors: Corinna Cortes, Anqi Mao, Christopher Mohri, Mehryar Mohri, Yutao Zhong,
- Abstract要約: 低濃度を維持しながら、正確なk$集合予測器を学習することを目的とした、新しいアプローチを提案する。
この設定に合わせた新たな目標損失関数を導入し、予測された集合の分類誤差と濃度の両方を考慮に入れた。
これらの損失関数の最小化は、我々が詳細に記述した新しい濃度認識アルゴリズムに繋がる。
- 参考スコア(独自算出の注目度): 33.00927499966789
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a detailed study of cardinality-aware top-$k$ classification, a novel approach that aims to learn an accurate top-$k$ set predictor while maintaining a low cardinality. We introduce a new target loss function tailored to this setting that accounts for both the classification error and the cardinality of the set predicted. To optimize this loss function, we propose two families of surrogate losses: cost-sensitive comp-sum losses and cost-sensitive constrained losses. Minimizing these loss functions leads to new cardinality-aware algorithms that we describe in detail in the case of both top-$k$ and threshold-based classifiers. We establish $H$-consistency bounds for our cardinality-aware surrogate loss functions, thereby providing a strong theoretical foundation for our algorithms. We report the results of extensive experiments on CIFAR-10, CIFAR-100, ImageNet, and SVHN datasets demonstrating the effectiveness and benefits of our cardinality-aware algorithms.
- Abstract(参考訳): 低濃度を維持しながら正確なトップ値のセット予測器を学習することを目的とした新しい手法である、濃度対応トップ値の分類について、詳細な研究を行う。
この設定に合わせた新たな目標損失関数を導入し、予測された集合の分類誤差と濃度の両方を考慮に入れた。
この損失関数を最適化するために、コスト感受性のcomp-sum損失とコスト感受性の制約された損失の2種類のサロゲート損失を提案する。
これらの損失関数の最小化は、トップ$kとしきい値ベースの分類器の両方の場合、より詳細に記述した新しい濃度認識アルゴリズムをもたらす。
我々は、基数対応の損失関数に対して$H$一貫性境界を確立することにより、アルゴリズムの強力な理論的基盤を提供する。
CIFAR-10, CIFAR-100, ImageNet, SVHNデータセットの広範な実験結果について報告する。
関連論文リスト
- Ada-KV: Optimizing KV Cache Eviction by Adaptive Budget Allocation for Efficient LLM Inference [19.447729423696096]
大規模言語モデルは様々な分野で優れていますが、推論に必要なキーバリュー(KV)キャッシュのために効率の限界に直面しています。
最近の取り組みでは、実行中に非クリティカルなキャッシュ要素を排除し、生成品質を維持しながら、所定のメモリ予算内でのキャッシュサイズを削減しようとしている。
本稿では, 単純かつ効果的な適応型予算割当アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-16T09:53:32Z) - Top-$k$ Classification and Cardinality-Aware Prediction [30.389055604165222]
和和と制約付き損失は、上位の$k$損失に対する$H$一貫性境界によって支持されることを示す。
本稿では、インスタンス依存型コスト依存学習を通じて、基数認識損失関数を導入する。
これらの損失を最小限に抑えることで、トップ$kの分類のための新しい濃度認識アルゴリズムが生まれる。
論文 参考訳(メタデータ) (2024-03-28T17:45:03Z) - Predictor-Rejector Multi-Class Abstention: Theoretical Analysis and Algorithms [30.389055604165222]
マルチクラス分類設定において,留意を伴う学習の鍵となる枠組みについて検討する。
この設定では、学習者は事前に定義されたコストで予測をしないことを選択できる。
我々は、強い非漸近的および仮説的整合性を保証するために、いくつかの新しい代理損失の族を導入する。
論文 参考訳(メタデータ) (2023-10-23T10:16:27Z) - Theoretically Grounded Loss Functions and Algorithms for Score-Based Multi-Class Abstention [30.389055604165222]
禁断損失関数に対する代用損失の新たなファミリーを導入する。
我々はこれらのサロゲート損失に対して、非漸近的で仮説固有の一貫性を保証する。
以上の結果から,最新のスコアベースサロゲート損失の相対的性能はデータセットによって異なる可能性が示唆された。
論文 参考訳(メタデータ) (2023-10-23T10:13:35Z) - Improved Regret for Efficient Online Reinforcement Learning with Linear
Function Approximation [69.0695698566235]
線形関数近似による強化学習と,コスト関数の逆変化について検討した。
本稿では,未知のダイナミクスと帯域幅フィードバックの一般設定に挑戦する,計算効率のよいポリシ最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-30T17:26:39Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Label Distributionally Robust Losses for Multi-class Classification:
Consistency, Robustness and Adaptivity [55.29408396918968]
多クラス分類のためのラベル分布ロバスト(LDR)損失という損失関数群について検討した。
我々の貢献は、多クラス分類のためのLDR損失のトップ$kの一貫性を確立することによって、一貫性と堅牢性の両方を含んでいる。
本稿では,各インスタンスのクラスラベルの雑音度に個別化温度パラメータを自動的に適応させる適応型LDR損失を提案する。
論文 参考訳(メタデータ) (2021-12-30T00:27:30Z) - Learning with Multiclass AUC: Theory and Algorithms [141.63211412386283]
ROC曲線 (AUC) の下の領域は、不均衡学習やレコメンダシステムといった問題に対するよく知られたランキング基準である。
本稿では,マルチクラスAUCメトリクスを最適化することで,多クラススコアリング関数を学習する問題について検討する。
論文 参考訳(メタデータ) (2021-07-28T05:18:10Z) - Learning by Minimizing the Sum of Ranked Range [58.24935359348289]
本稿では,学習目標を定式化するための一般的なアプローチとして,ランキング範囲(SoRR)の和を紹介した。
ランク付き範囲は、実数の集合のソートされた値の連続的なシーケンスである。
我々は,SoRRフレームワークの最小化のための機械学習における2つの応用,すなわち,バイナリ分類のためのAoRR集約損失とマルチラベル/マルチクラス分類のためのTKML個人損失について検討する。
論文 参考訳(メタデータ) (2020-10-05T01:58:32Z) - Adversarially Robust Learning via Entropic Regularization [31.6158163883893]
我々は、敵対的に堅牢なディープニューラルネットワークを訓練するための新しいアルゴリズムATENTを提案する。
我々の手法は、頑健な分類精度の観点から、競争力(またはより良い)性能を達成する。
論文 参考訳(メタデータ) (2020-08-27T18:54:43Z) - AP-Loss for Accurate One-Stage Object Detection [49.13608882885456]
一段階の物体検出器は、分類損失と局所化損失を同時に最適化することによって訓練される。
前者は、多数のアンカーのため、非常に前景と後方のアンカーの不均衡に悩まされる。
本稿では,一段検知器の分類タスクをランキングタスクに置き換える新しい枠組みを提案する。
論文 参考訳(メタデータ) (2020-08-17T13:22:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。