論文の概要: UEFI Vulnerability Signature Generation using Static and Symbolic Analysis
- arxiv url: http://arxiv.org/abs/2407.07166v1
- Date: Tue, 9 Jul 2024 18:08:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 18:41:00.499017
- Title: UEFI Vulnerability Signature Generation using Static and Symbolic Analysis
- Title(参考訳): 静的・記号解析を用いたUEFI脆弱性信号生成
- Authors: Md Shafiuzzaman, Achintya Desai, Laboni Sarker, Tevfik Bultan,
- Abstract要約: 我々は,Static Analysis Guided Symbolic Execution (STASE) と呼ばれる手法を導入する。
STASEは、両方の分析アプローチを統合して、その強みを活用し、弱点を最小限にする。
TianocoreのEDKIIでは、先日報告されたPixieFail脆弱性と13の新たな脆弱性を検出し、9つ中5つの脆弱性シグネチャを生成する。
- 参考スコア(独自算出の注目度): 2.6111533042510673
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Since its major release in 2006, the Unified Extensible Firmware Interface (UEFI) has become the industry standard for interfacing a computer's hardware and operating system, replacing BIOS. UEFI has higher privileged security access to system resources than any other software component, including the system kernel. Hence, identifying and characterizing vulnerabilities in UEFI is extremely important for computer security. However, automated detection and characterization of UEFI vulnerabilities is a challenging problem. Static vulnerability analysis techniques are scalable but lack precision (reporting many false positives), whereas symbolic analysis techniques are precise but are hampered by scalability issues due to path explosion and the cost of constraint solving. In this paper, we introduce a technique called STatic Analysis guided Symbolic Execution (STASE), which integrates both analysis approaches to leverage their strengths and minimize their weaknesses. We begin with a rule-based static vulnerability analysis on LLVM bitcode to identify potential vulnerability targets for symbolic execution. We then focus symbolic execution on each target to achieve precise vulnerability detection and signature generation. STASE relies on the manual specification of reusable vulnerability rules and attacker-controlled inputs. However, it automates the generation of harnesses that guide the symbolic execution process, addressing the usability and scalability of symbolic execution, which typically requires manual harness generation to reduce the state space. We implemented and applied STASE to the implementations of UEFI code base. STASE detects and generates vulnerability signatures for 5 out of 9 recently reported PixieFail vulnerabilities and 13 new vulnerabilities in Tianocore's EDKII codebase.
- Abstract(参考訳): 2006年にメジャーリリースされて以来、Unified Extensible Firmware Interface (UEFI) はBIOSに代わり、コンピュータのハードウェアとオペレーティングシステムにインターフェースするための業界標準となっている。
UEFIはシステムカーネルを含む他のソフトウェアコンポーネントよりも、システムリソースへの特権的なセキュリティアクセスがある。
したがって、UEFIの脆弱性の特定と識別は、コンピュータセキュリティにとって極めて重要である。
しかし、UEFI脆弱性の自動検出とキャラクタリゼーションは難しい問題である。
静的脆弱性解析技術はスケーラブルだが精度は乏しく(多くの偽陽性を報告している)、シンボリック解析技術は正確だが、パスの爆発や制約解決のコストによるスケーラビリティの問題によって妨げられている。
本稿では,STASE(Static Analysis Guided Symbolic Execution)と呼ばれる手法を紹介する。
まず、LLVMビットコードのルールベースの静的脆弱性分析から始め、シンボリック実行のための潜在的な脆弱性ターゲットを特定する。
次に、各ターゲットにシンボル実行を集中させて、正確な脆弱性検出と署名生成を実現する。
STASEは、再利用可能な脆弱性ルールと攻撃者が制御する入力のマニュアル仕様に依存している。
しかし、これはシンボル実行プロセスのガイドとなるハーネスの生成を自動化し、シンボル実行のユーザビリティとスケーラビリティに対処する。
我々はUEFIコードベースの実装にSTASEを実装し,適用した。
STASEは、最近報告されたPixieFail脆弱性と、TianocoreのEDKIIコードベースの13の新しい脆弱性を検知し、9つのうち5つで脆弱性シグネチャを生成する。
関連論文リスト
- GNN-Based Code Annotation Logic for Establishing Security Boundaries in C Code [41.10157750103835]
今日の相互接続されたソフトウェアランドスケープにおけるセンシティブなオペレーションの確保は、非常に難しいものです。
現代のプラットフォームは、セキュリティに敏感なコードをメインシステムから分離するために、Trusted Execution Environments (TEEs) に依存している。
Code Logic(CAL)は、TEE分離のためのセキュリティに敏感なコンポーネントを自動的に識別する先駆的なツールである。
論文 参考訳(メタデータ) (2024-11-18T13:40:03Z) - Lost and Found in Speculation: Hybrid Speculative Vulnerability Detection [15.258238125090667]
本稿では,IFT(Information Flow Tracking)とハードウェアファジィを構成する,新たなシリコン前検証手法であるSpecureを紹介し,投機的実行リークに対処する。
Specureは、RISC-V BOOMプロセッサのこれまで見過ごされていた投機的実行脆弱性を特定し、既存のファジィ技術よりも6.45倍高速な脆弱性検索空間を探索する。
論文 参考訳(メタデータ) (2024-10-29T21:42:06Z) - SecCodePLT: A Unified Platform for Evaluating the Security of Code GenAI [47.11178028457252]
我々はGenAIのリスクをコードする統合的かつ包括的な評価プラットフォームSecCodePLTを開発した。
安全でないコードには、専門家と自動生成を組み合わせたデータ生成のための新しい方法論を導入する。
サイバー攻撃支援のために、我々はモデルに実際の攻撃を引き起こすよう促すサンプルと、我々の環境における動的な指標を構築した。
論文 参考訳(メタデータ) (2024-10-14T21:17:22Z) - Divide and Conquer based Symbolic Vulnerability Detection [0.16385815610837165]
本稿では,シンボル実行と制御フローグラフ解析に基づく脆弱性検出手法を提案する。
提案手法では,無関係なプログラム情報を除去するために,分割・分散アルゴリズムを用いる。
論文 参考訳(メタデータ) (2024-09-20T13:09:07Z) - The Impact of SBOM Generators on Vulnerability Assessment in Python: A Comparison and a Novel Approach [56.4040698609393]
Software Bill of Materials (SBOM) は、ソフトウェア構成における透明性と妥当性を高めるツールとして推奨されている。
現在のSBOM生成ツールは、コンポーネントや依存関係を識別する際の不正確さに悩まされることが多い。
提案するPIP-sbomは,その欠点に対処する新しいピップインスパイアされたソリューションである。
論文 参考訳(メタデータ) (2024-09-10T10:12:37Z) - h4rm3l: A Dynamic Benchmark of Composable Jailbreak Attacks for LLM Safety Assessment [48.5611060845958]
我々は,静的なデータセットや攻撃や被害を克服するために,構成可能なジェイルブレイク攻撃の新たなベンチマークを提案する。
我々は、h4rm3lを使用して、6つの最先端(SOTA)オープンソースおよびプロプライエタリなLLMをターゲットにした2656の新たなジェイルブレイク攻撃のデータセットを生成する。
合成攻撃のいくつかは、以前報告した攻撃よりも効果的であり、SOTAクローズド言語モデルでは、アタック成功率は90%以上である。
論文 参考訳(メタデータ) (2024-08-09T01:45:39Z) - Static Detection of Filesystem Vulnerabilities in Android Systems [18.472695251551176]
本稿では,静的プログラム解析とアクセス制御ポリシ解析を組み合わせることで,従来の手法の限界を克服するPathSentinelを提案する。
PathSentinelは、プログラムとアクセス制御ポリシーを統一することにより、攻撃面を正確に識別し、多くの非現実的な攻撃を発生させる。
脆弱性検証の合理化のため、PathSentinelは大規模言語モデル(LLM)を活用して、ターゲットとするエクスプロイトコードを生成する。
論文 参考訳(メタデータ) (2024-07-15T23:10:52Z) - Securing the Open RAN Infrastructure: Exploring Vulnerabilities in Kubernetes Deployments [60.51751612363882]
ソフトウェアベースのオープン無線アクセスネットワーク(RAN)システムのセキュリティへの影響について検討する。
我々は、Near Real-Time RAN Controller(RIC)クラスタをサポートするインフラストラクチャに潜在的な脆弱性と設定ミスがあることを強調します。
論文 参考訳(メタデータ) (2024-05-03T07:18:45Z) - HasTEE+ : Confidential Cloud Computing and Analytics with Haskell [50.994023665559496]
信頼性コンピューティングは、Trusted Execution Environments(TEEs)と呼ばれる特別なハードウェア隔離ユニットを使用して、コテナントクラウドデプロイメントにおける機密コードとデータの保護を可能にする。
低レベルのC/C++ベースのツールチェーンを提供するTEEは、固有のメモリ安全性の脆弱性の影響を受けやすく、明示的で暗黙的な情報フローのリークを監視するための言語構造が欠如している。
私たちは、Haskellに埋め込まれたドメイン固有言語(cla)であるHasTEE+を使って、上記の問題に対処します。
論文 参考訳(メタデータ) (2024-01-17T00:56:23Z) - The Vulnerability Is in the Details: Locating Fine-grained Information of Vulnerable Code Identified by Graph-based Detectors [33.395068754566935]
VULEXPLAINERは、粗いレベルの脆弱なコードスニペットから脆弱性クリティカルなコード行を見つけるためのツールである。
C/C++の一般的な8つの脆弱性に対して、90%の精度で脆弱性をトリガするコードステートメントにフラグを付けることができる。
論文 参考訳(メタデータ) (2024-01-05T10:15:04Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。