論文の概要: HAMIL-QA: Hierarchical Approach to Multiple Instance Learning for Atrial LGE MRI Quality Assessment
- arxiv url: http://arxiv.org/abs/2407.07254v1
- Date: Tue, 9 Jul 2024 22:19:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 18:31:06.385240
- Title: HAMIL-QA: Hierarchical Approach to Multiple Instance Learning for Atrial LGE MRI Quality Assessment
- Title(参考訳): HAMIL-QA:Atrial LGE MRI品質評価のためのマルチインスタンス学習のための階層的アプローチ
- Authors: K M Arefeen Sultan, Md Hasibul Husain Hisham, Benjamin Orkild, Alan Morris, Eugene Kholmovski, Erik Bieging, Eugene Kwan, Ravi Ranjan, Ed DiBella, Shireen Elhabian,
- Abstract要約: 本研究では,これらの障害を克服するためのマルチインスタンス学習(MIL)フレームワークであるHAMIL-QAを紹介する。
Hamil-QAは階層的なバッグとサブバッグ構造を採用しており、サブバッグ内のターゲット分析を可能にし、ボリュームレベルで洞察を集約する。
実験の結果,HAMIL-QAは既存のMIL法や従来の教師付きアプローチ,AUROC,F1-Scoreを超越していることがわかった。
- 参考スコア(独自算出の注目度): 0.21065896965719066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The accurate evaluation of left atrial fibrosis via high-quality 3D Late Gadolinium Enhancement (LGE) MRI is crucial for atrial fibrillation management but is hindered by factors like patient movement and imaging variability. The pursuit of automated LGE MRI quality assessment is critical for enhancing diagnostic accuracy, standardizing evaluations, and improving patient outcomes. The deep learning models aimed at automating this process face significant challenges due to the scarcity of expert annotations, high computational costs, and the need to capture subtle diagnostic details in highly variable images. This study introduces HAMIL-QA, a multiple instance learning (MIL) framework, designed to overcome these obstacles. HAMIL-QA employs a hierarchical bag and sub-bag structure that allows for targeted analysis within sub-bags and aggregates insights at the volume level. This hierarchical MIL approach reduces reliance on extensive annotations, lessens computational load, and ensures clinically relevant quality predictions by focusing on diagnostically critical image features. Our experiments show that HAMIL-QA surpasses existing MIL methods and traditional supervised approaches in accuracy, AUROC, and F1-Score on an LGE MRI scan dataset, demonstrating its potential as a scalable solution for LGE MRI quality assessment automation. The code is available at: $\href{https://github.com/arf111/HAMIL-QA}{\text{this https URL}}$
- Abstract(参考訳): 左心房線維症の左心房細動の3次元遅延ガドリニウム造影(LGE)MRIによる評価は, 心房細動管理には重要であるが, 患者の運動や画像の変動などの要因によって妨げられる。
自動LGEMRI品質評価の追求は、診断精度の向上、評価の標準化、患者結果の改善に重要である。
このプロセスを自動化することを目的としたディープラーニングモデルは、専門家アノテーションの不足、高い計算コスト、高度に可変した画像の微妙な診断の詳細を捉える必要性など、重大な課題に直面している。
本研究では,これらの障害を克服するためのマルチインスタンス学習(MIL)フレームワークであるHAMIL-QAを紹介する。
HAMIL-QAは階層的なバッグとサブバッグ構造を採用しており、サブバッグ内のターゲット分析を可能にし、ボリュームレベルで洞察を集約する。
この階層的MILアプローチは、広範囲なアノテーションへの依存を減らし、計算負荷を減らし、診断的に重要な画像の特徴に焦点をあてることで、臨床的に関連する品質予測を確実にする。
実験の結果,HAMIL-QAは既存のMIL法や従来の教師付きアプローチ,AUROC,F1-Scoreを超越し,LGE MRI品質評価自動化のためのスケーラブルなソリューションとしての可能性を示した。
$\href{https://github.com/arf111/HAMIL-QA}{\text{this https URL}}$
関連論文リスト
- Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented Generation (RAG) は,大規模言語モデル (LLM) の性能向上のための有望なアプローチとして登場した。
医療用QAデータセットに様々な補助的要素を提供するMedRGB(MedRGB)を導入する。
実験結果から,検索した文書のノイズや誤情報の処理能力に限界があることが判明した。
論文 参考訳(メタデータ) (2024-11-14T06:19:18Z) - Rethinking Medical Anomaly Detection in Brain MRI: An Image Quality Assessment Perspective [14.39502951611029]
構造類似度指数の損失をl1損失と組み合わせた核融合品質損失関数を提案する。
また,正常領域と異常領域の平均強度比(AIR)を高めるデータ前処理戦略を導入し,異常の識別を改善した。
提案したIQAアプローチは,BraTS21(T2,FLAIR)およびMSULBデータセット上のDice係数(DICE)とAUPRC(Area Under the Precision-Recall Curve)において,大幅な改善(>10%)を達成している。
論文 参考訳(メタデータ) (2024-08-15T15:55:07Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
大規模言語モデル(LLM)は、問題解決と意思決定の能力の向上を示している。
本稿ではメタ推論技術を必要とするプロセスベースのベンチマークMR-Benを提案する。
メタ推論のパラダイムは,システム2のスロー思考に特に適しています。
論文 参考訳(メタデータ) (2024-06-20T03:50:23Z) - Decoding Cognitive Health Using Machine Learning: A Comprehensive Evaluation for Diagnosis of Significant Memory Concern [3.5574575466006895]
重要な記憶障害(SMC)のタイムリーな識別は、積極的認知健康管理に不可欠である。
本研究は,機械学習モデルを総合的に評価した,最先端のレビューである。
RNNでは、性能指標として、ディープランダムベクトル汎関数リンク(dRVFL)とアンサンブルdRVFL(edRVFL)が最適分類器として出現する。
論文 参考訳(メタデータ) (2024-05-11T18:48:59Z) - Empowering Healthcare through Privacy-Preserving MRI Analysis [3.6394715554048234]
本稿では,Ensemble-Based Federated Learning (EBFL)フレームワークを紹介する。
EBFLフレームワークは、機密性の高い患者データを共有することよりも、モデルの特徴を強調することによって、従来のアプローチから逸脱する。
グリオーマ,髄膜腫,下垂体,非腫瘍例などの脳腫瘍の分類において,有意な精度が得られた。
論文 参考訳(メタデータ) (2024-03-14T19:51:18Z) - Uncertainty Quantification in Machine Learning Based Segmentation: A
Post-Hoc Approach for Left Ventricle Volume Estimation in MRI [0.0]
左室容積推定は各種心血管疾患の診断・管理に重要である。
近年の機械学習、特にU-Netのような畳み込みネットワークは、医療画像の自動セグメンテーションを促進している。
本研究では,LV容積予測におけるポストホック不確実性推定のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-10-30T13:44:55Z) - Two-Stage Deep Learning Framework for Quality Assessment of Left Atrial
Late Gadolinium Enhanced MRI Images [0.22585387137796725]
LGE-MRI画像の自動診断品質評価のための2段階のディープラーニング手法を提案する。
本発明の方法は、関連する領域にフォーカスする左心房検出器と、診断品質を評価するディープネットワークとを含む。
論文 参考訳(メタデータ) (2023-10-13T01:27:36Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
機械学習は医療の改善に大いに貢献するが、その利用が健康格差を広めたり増幅したりしないことを確実にすることは重要である。
アルゴリズムの不公平性の潜在的な要因の1つ、ショートカット学習は、トレーニングデータにおける不適切な相関に基づいてMLモデルが予測した時に発生する。
マルチタスク学習を用いて,臨床MLシステムの公平性評価の一環として,ショートカット学習の評価と緩和を行う手法を提案する。
論文 参考訳(メタデータ) (2022-07-21T09:35:38Z) - Deep AUC Maximization for Medical Image Classification: Challenges and
Opportunities [60.079782224958414]
我々は、AUCによる新たな深層学習手法による機会と課題を提示し、議論する(別名、アンダーラインbfディープアンダーラインbfAUC分類)。
論文 参考訳(メタデータ) (2021-11-01T15:31:32Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Robust Deep AUC Maximization: A New Surrogate Loss and Empirical Studies
on Medical Image Classification [63.44396343014749]
AUCスコアに対する新たなマージンベースサロゲート損失関数を提案する。
一般的に使用されるものよりも頑丈である。
大規模な最適化の観点からも同じ利点を享受しながら、正方損失。
私たちの知る限りでは、DAMが大規模医療画像データセットで成功するのはこれが初めてです。
論文 参考訳(メタデータ) (2020-12-06T03:41:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。