論文の概要: Dual-stage Hyperspectral Image Classification Model with Spectral Supertoken
- arxiv url: http://arxiv.org/abs/2407.07307v2
- Date: Sat, 13 Jul 2024 08:12:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 11:29:58.488902
- Title: Dual-stage Hyperspectral Image Classification Model with Spectral Supertoken
- Title(参考訳): スペクトルスーパートークンを用いたデュアルステージハイパースペクトル画像分類モデル
- Authors: Peifu Liu, Tingfa Xu, Jie Wang, Huan Chen, Huiyan Bai, Jianan Li,
- Abstract要約: スーパーピクセルの概念に触発されたDual-stage Spectral Supertoken(DSTC)を紹介する。
DSTCはスペクトル微分に基づく画素クラスタリングを用いて、類似のスペクトル特性を持つグループ画素をスペクトルスーパートーケンに分類する。
適応的に重みを異なるカテゴリに割り当てるクラスプロポーションベースのソフトラベルも提案する。
- 参考スコア(独自算出の注目度): 15.426635239291729
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral image classification, a task that assigns pre-defined classes to each pixel in a hyperspectral image of remote sensing scenes, often faces challenges due to the neglect of correlations between spectrally similar pixels. This oversight can lead to inaccurate edge definitions and difficulties in managing minor spectral variations in contiguous areas. To address these issues, we introduce the novel Dual-stage Spectral Supertoken Classifier (DSTC), inspired by superpixel concepts. DSTC employs spectrum-derivative-based pixel clustering to group pixels with similar spectral characteristics into spectral supertokens. By projecting the classification of these tokens onto the image space, we achieve pixel-level results that maintain regional classification consistency and precise boundary. Moreover, recognizing the diversity within tokens, we propose a class-proportion-based soft label. This label adaptively assigns weights to different categories based on their prevalence, effectively managing data distribution imbalances and enhancing classification performance. Comprehensive experiments on WHU-OHS, IP, KSC, and UP datasets corroborate the robust classification capabilities of DSTC and the effectiveness of its individual components. Code will be publicly available at https://github.com/laprf/DSTC.
- Abstract(参考訳): ハイパースペクトル画像分類(Hyperspectral image classification)は、リモートセンシングシーンのハイパースペクトル画像において、各ピクセルに予め定義されたクラスを割り当てるタスクであり、スペクトル的に類似したピクセル間の相関が無視されているため、しばしば課題に直面している。
この監視は、不正確なエッジ定義と、連続した領域における小さなスペクトル変動を管理するのに困難をもたらす可能性がある。
これらの問題に対処するために、スーパーピクセルの概念に触発された新しいDual-stage Spectral Supertoken Classifier (DSTC)を紹介する。
DSTCはスペクトル微分に基づく画素クラスタリングを用いて、類似のスペクトル特性を持つグループ画素をスペクトルスーパートーケンに分類する。
これらのトークンの分類を画像空間に投影することにより、局所的な分類一貫性と正確な境界を維持するピクセルレベルの結果が得られる。
さらに,トークン内の多様性を認識し,クラスプロポーションに基づくソフトラベルを提案する。
このラベルは、その頻度に基づいて異なるカテゴリに重みを適応的に割り当て、データ分散の不均衡を効果的に管理し、分類性能を向上させる。
WHU-OHS、IP、KSC、UPデータセットに関する総合的な実験は、DSTCの堅牢な分類能力とその個々のコンポーネントの有効性を裏付ける。
コードはhttps://github.com/laprf/DSTC.comで公開される。
関連論文リスト
- Superpixel Graph Contrastive Clustering with Semantic-Invariant
Augmentations for Hyperspectral Images [64.72242126879503]
ハイパースペクトル画像(HSI)クラスタリングは重要な課題だが難しい課題である。
まず3次元と2次元のハイブリッド畳み込みニューラルネットワークを用いてHSIの高次空間およびスペクトルの特徴を抽出する。
次に,超画素グラフの対比クラスタリングモデルを設計し,識別的超画素表現を学習する。
論文 参考訳(メタデータ) (2024-03-04T07:40:55Z) - Augmenting Prototype Network with TransMix for Few-shot Hyperspectral
Image Classification [9.479240476603353]
我々は,数ショットハイパースペクトル画像分類(APNT)のためのTransMixによるプロトタイプネットワークの拡張を提案する。
プロトタイプネットワークをバックボーンとして、トランスフォーマーを特徴抽出器として採用し、画素間関係を学習する。
提案手法は,数発のハイパースペクトル画像分類において,技術性能とロバスト性の向上を実証した。
論文 参考訳(メタデータ) (2024-01-22T06:56:52Z) - Superpixel-based and Spatially-regularized Diffusion Learning for
Unsupervised Hyperspectral Image Clustering [4.643572021927615]
本稿では,新しい教師なしHSIクラスタリングアルゴリズム,スーパーピクセルベースおよび空間正規化拡散学習(S2DL)を提案する。
S2DLは、HSIに符号化された豊富な空間情報を拡散幾何学に基づくクラスタリングに組み込む。
S2DLのパフォーマンスは、公開されている実世界の3つのHSIに関する広範な実験で説明されている。
論文 参考訳(メタデータ) (2023-12-24T09:54:40Z) - Distilling Self-Supervised Vision Transformers for Weakly-Supervised
Few-Shot Classification & Segmentation [58.03255076119459]
視覚変換器(ViT)を利用した弱教師付き小ショット画像分類とセグメンテーションの課題に対処する。
提案手法は,自己監督型ViTからトークン表現を抽出し,その相関関係を利用して分類とセグメンテーションの予測を行う。
Pascal-5iとCOCO-20iの実験は、様々な監視設定において大きなパフォーマンス向上を示した。
論文 参考訳(メタデータ) (2023-07-07T06:16:43Z) - Multi-spectral Class Center Network for Face Manipulation Detection and Localization [52.569170436393165]
顔の操作検出と局所化のための新しいマルチスペクトル・クラス・センター・ネットワーク(MSCCNet)を提案する。
周波数帯域の異なる特徴に基づき、MSCCモジュールはマルチスペクトルクラスセンターを収集し、ピクセル対クラス関係を計算する。
多スペクトルクラスレベルの表現を適用することで、偽画像の操作された領域に敏感な視覚概念の意味情報を抑えることができる。
論文 参考訳(メタデータ) (2023-05-18T08:09:20Z) - Data Augmentation Vision Transformer for Fine-grained Image
Classification [1.6211899643913996]
本稿では,データ拡張に基づくデータ拡張ビジョントランス (DAVT) を提案する。
また,階層的注意選択(HAS)手法を提案し,学習レベル間の識別マーカーの識別能力を向上させる。
実験結果から,CUB-200-2011とStanford Dogsの2つの一般データセットにおける本手法の精度は,従来の主流手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-11-23T11:34:11Z) - Probabilistic Deep Metric Learning for Hyperspectral Image
Classification [91.5747859691553]
本稿では,ハイパースペクトル画像分類のための確率論的深度学習フレームワークを提案する。
ハイパースペクトルセンサーが捉えた画像に対して、各ピクセルのカテゴリを予測することを目的としている。
我々のフレームワークは、既存のハイパースペクトル画像分類法に容易に適用できる。
論文 参考訳(メタデータ) (2022-11-15T17:57:12Z) - Superpixel-guided Discriminative Low-rank Representation of
Hyperspectral Images for Classification [49.32130776974202]
SP-DLRRは2つのモジュール、すなわち分類誘導スーパーピクセルセグメンテーションと識別低ランク表現で構成されている。
3つのベンチマークデータセットの実験結果から,SP-DLRRが最先端手法よりも有意な優位性を示した。
論文 参考訳(メタデータ) (2021-08-25T10:47:26Z) - SpectralFormer: Rethinking Hyperspectral Image Classification with
Transformers [91.09957836250209]
ハイパースペクトル(HS)画像は、ほぼ連続したスペクトル情報によって特徴づけられる。
CNNは、HS画像分類において強力な特徴抽出器であることが証明されている。
我々は、HS画像分類のためのulSpectralFormerと呼ばれる新しいバックボーンネットワークを提案する。
論文 参考訳(メタデータ) (2021-07-07T02:59:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。