論文の概要: ViTime: A Visual Intelligence-Based Foundation Model for Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2407.07311v2
- Date: Wed, 14 Aug 2024 08:02:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 17:26:11.336005
- Title: ViTime: A Visual Intelligence-Based Foundation Model for Time Series Forecasting
- Title(参考訳): ViTime: 時系列予測のためのビジュアルインテリジェンスベースの基礎モデル
- Authors: Luoxiao Yang, Yun Wang, Xinqi Fan, Israel Cohen, Jingdong Chen, Yue Zhao, Zijun Zhang,
- Abstract要約: 本稿では,時系列予測のためのビジュアルインテリジェンスに基づく新しい基礎モデルであるViTimeを提案する。
これまで目にしなかったさまざまな予測データセットの実験は、ViTimeが最先端のゼロショットパフォーマンスを達成することを実証している。
- 参考スコア(独自算出の注目度): 38.87384888881476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The success of large pretrained models in natural language processing (NLP) and computer vision (CV) has opened new avenues for constructing foundation models for time series forecasting (TSF). Traditional TSF foundation models rely heavily on numerical data fitting. In contrast, the human brain is inherently skilled at processing visual information, prefer predicting future trends by observing visualized sequences. From a biomimetic perspective, utilizing models to directly process numerical sequences might not be the most effective route to achieving Artificial General Intelligence (AGI). This paper proposes ViTime, a novel Visual Intelligence-based foundation model for TSF. ViTime overcomes the limitations of numerical time series data fitting by utilizing visual data processing paradigms and employs a innovative data synthesis method during training, called Real Time Series (RealTS). Experiments on a diverse set of previously unseen forecasting datasets demonstrate that ViTime achieves state-of-the-art zero-shot performance, even surpassing the best individually trained supervised models in some situations. These findings suggest that visual intelligence can significantly enhance time series analysis and forecasting, paving the way for more advanced and versatile models in the field. The code for our framework is accessible at https://github.com/IkeYang/ViTime.
- Abstract(参考訳): 自然言語処理(NLP)とコンピュータビジョン(CV)における大規模事前学習モデルの成功は、時系列予測(TSF)の基礎モデルを構築するための新たな道を開いた。
伝統的なTSFファンデーションモデルは数値データフィッティングに大きく依存している。
対照的に、人間の脳は視覚情報を処理するのに本質的に熟練しており、可視化されたシーケンスを観察することで将来のトレンドを予測することを好む。
生体模倣の観点からは、数値シーケンスを直接処理するモデルを活用することは、人工知能(AGI)を実現するための最も効果的な方法ではないかもしれない。
本稿では,TSFのための新しいビジュアルインテリジェンスベース基盤モデルであるViTimeを提案する。
ViTimeは、ビジュアルデータ処理パラダイムを活用することで、数値時系列データフィッティングの限界を克服し、Real Time Series (RealTS)と呼ばれるトレーニング中に革新的なデータ合成手法を採用する。
これまで目にしなかったさまざまな予測データセットの実験は、ViTimeが最先端のゼロショットのパフォーマンスを達成し、いくつかの状況において最高のトレーニングを受けた教師付きモデルを超えていることを示している。
これらの結果は、視覚知能は時系列解析と予測を大幅に向上させ、現場におけるより高度で多目的なモデルへの道を開くことを示唆している。
私たちのフレームワークのコードはhttps://github.com/IkeYang/ViTime.comでアクセスできます。
関連論文リスト
- VisionTS: Visual Masked Autoencoders Are Free-Lunch Zero-Shot Time Series Forecasters [27.80286758290421]
本稿では,リッチで高品質な自然画像からTSFファンデーションモデルを構築するための新しい道を探る。
画像再構成タスクとしてTSFを再構成することにより、画像事前学習とTSF下流タスクのギャップを埋める。
提案されたVisionTSは、既存のTSFファンデーションモデルよりも優れたゼロショット予測性能を実現することができる。
論文 参考訳(メタデータ) (2024-08-30T12:51:55Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
本稿では,大規模時系列モデル(LTSM)の早期開発を目的とした。
事前トレーニング中に、最大10億のタイムポイントを持つ大規模なデータセットをキュレートします。
多様なアプリケーションのニーズを満たすため,予測,計算,時系列の異常検出を統一的な生成タスクに変換する。
論文 参考訳(メタデータ) (2024-02-04T06:55:55Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
本稿では,デコーダのみの変換器アーキテクチャに基づく時系列予測のための汎用基礎モデルであるLag-Llamaを提案する。
Lag-Llamaは、複数のドメインからの多様な時系列データの大規模なコーパスで事前訓練され、強力なゼロショット一般化能力を示す。
このような未確認データセットの比較的小さな部分で微調整を行うと、Lag-Llamaは最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-10-12T12:29:32Z) - Pushing the Limits of Pre-training for Time Series Forecasting in the
CloudOps Domain [54.67888148566323]
クラウドオペレーションドメインから,大規模時系列予測データセットを3つ導入する。
強力なゼロショットベースラインであり、モデルとデータセットサイズの両方において、さらなるスケーリングの恩恵を受けています。
これらのデータセットと結果を取得することは、古典的および深層学習のベースラインを事前訓練された方法と比較した総合的なベンチマーク結果の集合である。
論文 参考訳(メタデータ) (2023-10-08T08:09:51Z) - TEMPO: Prompt-based Generative Pre-trained Transformer for Time Series Forecasting [24.834846119163885]
本稿では,時系列表現を効果的に学習できる新しいフレームワークTEMPOを提案する。
TEMPOは、様々な領域のデータから現実世界の時間現象を動的にモデル化する機能を拡張する。
論文 参考訳(メタデータ) (2023-10-08T00:02:25Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z) - VQ-AR: Vector Quantized Autoregressive Probabilistic Time Series
Forecasting [10.605719154114354]
時系列モデルは過去の予測を正確に予測することを目的としており、そこではビジネス上の意思決定のような重要な下流のタスクに予測が使用される。
本稿では,新しい自己回帰型アーキテクチャであるVQ-ARを提案する。
論文 参考訳(メタデータ) (2022-05-31T15:43:46Z) - Visualising Deep Network's Time-Series Representations [93.73198973454944]
機械学習モデルの普及にもかかわらず、多くの場合、モデルの内部で起きていることに関する洞察のないブラックボックスとして運用される。
本稿では,多次元時系列データの可視化に着目し,この問題に対処する手法を提案する。
高周波在庫市場データセットの実験は、この方法が迅速かつ識別可能な可視化を提供することを示しています。
論文 参考訳(メタデータ) (2021-03-12T09:53:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。