論文の概要: HiLight: Technical Report on the Motern AI Video Language Model
- arxiv url: http://arxiv.org/abs/2407.07325v2
- Date: Thu, 11 Jul 2024 07:44:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 11:33:49.117323
- Title: HiLight: Technical Report on the Motern AI Video Language Model
- Title(参考訳): HiLight: Motern AIビデオ言語モデルに関する技術レポート
- Authors: Zhiting Wang, Qiangong Zhou, Kangjie Yang, Zongyang Liu, Xin Mao,
- Abstract要約: 本報告では,ビデオテキストアライメントのための最先端ビデオエンコーダと,HiLightと呼ばれるビデオ会話フレームワークの実装について述べる。
我々のゴールはビリヤードの文脈におけるビデオ理解の課題に対処することである。
- 参考スコア(独自算出の注目度): 1.493635365420495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This technical report presents the implementation of a state-of-the-art video encoder for video-text modal alignment and a video conversation framework called HiLight, which features dual visual towers. The work is divided into two main parts: 1.alignment of video and text modalities; 2.convenient and efficient way to interact with users. Our goal is to address the task of video comprehension in the context of billiards. The report includes a discussion of the concepts and the final solution developed during the task's implementation.
- Abstract(参考訳): 本技術報告では,ビデオテキストアライメントのための最先端ビデオエンコーダと,デュアルビジュアルタワーを備えたHiLightと呼ばれるビデオ会話フレームワークの実装について述べる。
作業内容は,ビデオとテキストのモダリティのアライメント,ユーザとの対話の持続的かつ効率的な方法の2つに分けられる。
我々のゴールはビリヤードの文脈におけるビデオ理解の課題に対処することである。
このレポートには、タスクの実装時に開発された概念と最終ソリューションに関する議論が含まれている。
関連論文リスト
- RACCooN: A Versatile Instructional Video Editing Framework with Auto-Generated Narratives [58.15403987979496]
本稿では,RACCooNを提案する。
ビデオ生成モデルは、自動生成された物語や指示を取り入れて、生成されたコンテンツの質と精度を高める。
提案フレームワークは,ビデオ・パラグラフ生成,映像コンテンツ編集において優れた多機能性を示し,さらに拡張するために他のSoTAビデオ生成モデルに組み込むことができる。
論文 参考訳(メタデータ) (2024-05-28T17:46:36Z) - InternVideo2: Scaling Foundation Models for Multimodal Video Understanding [51.129913789991924]
InternVideo2は、ビデオファウンデーションモデル(FM)の新たなファミリーで、ビデオ認識、ビデオ音声タスク、ビデオ中心タスクの最先端の結果を達成する。
私たちのコアデザインは、マスク付きビデオモデリング、クロスコントラスト学習、予測トークンを統合し、最大6Bビデオサイズまでスケールアップするプログレッシブトレーニングアプローチです。
論文 参考訳(メタデータ) (2024-03-22T17:57:42Z) - VidCoM: Fast Video Comprehension through Large Language Models with Multimodal Tools [44.78291853329394]
textbfVidCoMは、Large Language Models (LLM)を活用して、軽量なビジュアルツールを使用して動画を推論する高速適応フレームワークである。
InsOVERアルゴリズムは、言語命令の分解とビデオイベントの間の効率的なハンガリー語マッチングに基づいて、対応するビデオイベントを特定する。
論文 参考訳(メタデータ) (2023-10-16T17:05:56Z) - Video-Teller: Enhancing Cross-Modal Generation with Fusion and
Decoupling [79.49128866877922]
Video-Tellerは、マルチモーダル融合と微粒なモーダルアライメントを利用するビデオ言語基盤モデルである。
Video-Tellerは、凍結した事前訓練されたビジョンと言語モジュールを利用することで、トレーニング効率を高める。
大規模言語モデルの堅牢な言語機能を活用し、簡潔かつ精巧なビデオ記述の生成を可能にする。
論文 参考訳(メタデータ) (2023-10-08T03:35:27Z) - Animate-A-Story: Storytelling with Retrieval-Augmented Video Generation [69.20173154096]
本研究では,2つの機能モジュールからなるフレームワーク,Motion Structure RetrievalとStructure-Guided Text-to-Video Synthesisを開発した。
最初のモジュールでは、オフザシェルフビデオ検索システムを活用し、動画深度をモーション構造として抽出する。
第2のモジュールに対しては、構造と文字を柔軟に制御する制御可能なビデオ生成モデルを提案する。
論文 参考訳(メタデータ) (2023-07-13T17:57:13Z) - VLG: General Video Recognition with Web Textual Knowledge [47.3660792813967]
我々は、統合されたフレームワーク内で異なる認識タスクを解くための一般的なビデオ認識(GVR)問題に焦点を当てる。
インターネットからクロールされたノイズの多いテキスト記述から意味知識を活用することで、統合視覚言語フレームワーク(VLG)を提案する。
我々のVLGは、まずビデオと言語データセットで事前訓練され、共有機能空間を学習し、それからフレキシブルなバイモーダルなアテンションヘッドを考案し、異なる設定下でハイレベルなセマンティックな概念を協調します。
論文 参考訳(メタデータ) (2022-12-03T15:46:49Z) - Video-Text Pre-training with Learned Regions [59.30893505895156]
Video-Textプレトレーニングは、大規模なビデオテキストペアから転送可能な表現を学ぶことを目的としている。
本研究では,大規模ビデオテキストペアの事前学習において,対象物の構造を考慮に入れたビデオテキスト学習用モジュール「RereaLearner」を提案する。
論文 参考訳(メタデータ) (2021-12-02T13:06:53Z) - VX2TEXT: End-to-End Learning of Video-Based Text Generation From
Multimodal Inputs [103.99315770490163]
本稿では,ビデオ+テキスト,音声,音声によるマルチモーダル入力からテキストを生成するフレームワークを提案する。
実験により、一つのアーキテクチャに基づくアプローチは、3つのビデオベースのテキスト生成タスクにおいて最先端のタスクより優れていることが示された。
論文 参考訳(メタデータ) (2021-01-28T15:22:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。