Leveraging Conversational Generative AI for Anomaly Detection in Digital Substations
- URL: http://arxiv.org/abs/2411.16692v1
- Date: Sat, 09 Nov 2024 18:38:35 GMT
- Title: Leveraging Conversational Generative AI for Anomaly Detection in Digital Substations
- Authors: Aydin Zaboli, Seong Lok Choi, Junho Hong,
- Abstract summary: The research employs advanced performance metrics to conduct a comparative assessment between the proposed AD and HITL-based AD frameworks.
This approach presents a promising solution for enhancing the reliability of power system operations in the face of evolving cybersecurity challenges.
- Score: 0.0
- License:
- Abstract: This study addresses critical challenges of cybersecurity in digital substations by proposing an innovative task-oriented dialogue (ToD) system for anomaly detection (AD) in multicast messages, specifically, generic object oriented substation event (GOOSE) and sampled value (SV) datasets. Leveraging generative artificial intelligence (GenAI) technology, the proposed framework demonstrates superior error reduction, scalability, and adaptability compared with traditional human-in-the-loop (HITL) processes. Notably, this methodology offers significant advantages over machine learning (ML) techniques in terms of efficiency and implementation speed when confronting novel and/or unknown cyber threats, while also maintaining model complexity and precision. The research employs advanced performance metrics to conduct a comparative assessment between the proposed AD and HITL-based AD frameworks, utilizing a hardware-in-the-loop (HIL) testbed for generating and extracting features of IEC61850 communication messages. This approach presents a promising solution for enhancing the reliability of power system operations in the face of evolving cybersecurity challenges.
Related papers
- Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
computational safety is a mathematical framework that enables the quantitative assessment, formulation, and study of safety challenges in GenAI.
We show how sensitivity analysis and loss landscape analysis can be used to detect malicious prompts with jailbreak attempts.
We discuss key open research challenges, opportunities, and the essential role of signal processing in computational AI safety.
arXiv Detail & Related papers (2025-02-18T02:26:50Z) - Hybrid Machine Learning Models for Intrusion Detection in IoT: Leveraging a Real-World IoT Dataset [0.0]
Intrusion Detection Systems (IDS) are crucial for mitigating these threats.
Recent advancements in Machine Learning (ML) offer promising avenues for improvement.
This research explores a hybrid approach, combining several standalone ML models.
arXiv Detail & Related papers (2025-02-17T23:41:10Z) - AI/ML Based Detection and Categorization of Covert Communication in IPv6 Network [0.8130739369606821]
IPv6 extension headers allow attackers to create covert channels or bypass security mechanisms, leading to potential data breaches or system compromises.
The complexity of detecting covert communication, evolving injection techniques, and scarcity of data make building machine-learning models challenging.
This study uses comprehensive machine learning techniques to train the model proposed in this study to detect threats.
arXiv Detail & Related papers (2025-01-18T02:05:37Z) - Federated PCA on Grassmann Manifold for IoT Anomaly Detection [23.340237814344384]
Traditional machine learning-based intrusion detection systems (ML-IDS) possess limitations such as the requirement for labeled data.
Recent unsupervised ML-IDS approaches such as AutoEncoders and Generative Adversarial Networks (GAN) offer alternative solutions.
This paper proposes a novel federated unsupervised anomaly detection framework, FedPCA, that learns common representations of distributed non-i.i.d. datasets.
arXiv Detail & Related papers (2024-07-10T07:23:21Z) - A Novel Generative AI-Based Framework for Anomaly Detection in Multicast Messages in Smart Grid Communications [0.0]
Cybersecurity breaches in digital substations pose significant challenges to the stability and reliability of power system operations.
This paper proposes a task-oriented dialogue system for anomaly detection (AD) in datasets of multicast messages.
It has a lower potential error and better scalability and adaptability than a process that considers the cybersecurity guidelines recommended by humans.
arXiv Detail & Related papers (2024-06-08T13:28:50Z) - Uncertainty Estimation in Multi-Agent Distributed Learning for AI-Enabled Edge Devices [0.0]
Edge IoT devices have seen a paradigm shift with the introduction of FPGAs and AI accelerators.
This advancement has vastly amplified their computational capabilities, emphasizing the practicality of edge AI.
Our study explores methods that enable distributed data processing through AI-enabled edge devices, enhancing collaborative learning capabilities.
arXiv Detail & Related papers (2024-03-14T07:40:32Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
A digital twin (DT) leverages a virtual representation of the physical world, along with communication (e.g., 6G), computing, and artificial intelligence (AI) technologies to enable many connected intelligence services.
Wireless systems can exploit the paradigm of semantic communication (SC) for facilitating informed decision-making under strict communication constraints.
A novel framework called causal semantic communication (CSC) is proposed for DT-based wireless systems.
arXiv Detail & Related papers (2023-04-25T00:15:00Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.