Machine Learning Assisted Design of mmWave Wireless Transceiver Circuits
- URL: http://arxiv.org/abs/2407.07458v1
- Date: Wed, 10 Jul 2024 08:21:01 GMT
- Title: Machine Learning Assisted Design of mmWave Wireless Transceiver Circuits
- Authors: Xuzhe Zhao,
- Abstract summary: mmWave integrated circuits (IC) have attracted significant research interests over the past few decades.
In this thesis, 28-GHz transceiver circuits are first investigated with detailed schematics and associated performance metrics.
Some conventional and large-scale machine learning (ML) approaches are integrated into the design pipeline of the chosen systems to predict circuit parameters based on desired specifications.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As fifth-generation (5G) and upcoming sixth-generation (6G) communications exhibit tremendous demands in providing high data throughput with a relatively low latency, millimeter-wave (mmWave) technologies manifest themselves as the key enabling components to achieve the envisioned performance and tasks. In this context, mmWave integrated circuits (IC) have attracted significant research interests over the past few decades, ranging from individual block design to complex system design. However, the highly nonlinear properties and intricate trade-offs involved render the design of analog or RF circuits a complicated process. The rapid evolution of fabrication technology also results in an increasingly long time allocated in the design process due to more stringent requirements. In this thesis, 28-GHz transceiver circuits are first investigated with detailed schematics and associated performance metrics. In this case, two target systems comprising heterogeneous individual blocks are selected and demonstrated on both the transmitter and receiver sides. Subsequently, some conventional and large-scale machine learning (ML) approaches are integrated into the design pipeline of the chosen systems to predict circuit parameters based on desired specifications, thereby circumventing the typical time-consuming iterations found in traditional methods. Finally, some potential research directions are discussed from the perspectives of circuit design and ML algorithms.
Related papers
- AICircuit: A Multi-Level Dataset and Benchmark for AI-Driven Analog Integrated Circuit Design [10.354863964933019]
We present AICircuit, a benchmark for developing and evaluating machine learning algorithms in analog and radio-frequency circuit design.
A major obstacle for bearing the power of machine learning in circuit design is the availability of a generic and diverse dataset.
We extensively evaluate various ML algorithms on the dataset, revealing the potential of ML algorithms in learning the mapping from the design specifications to the desired circuit parameters.
arXiv Detail & Related papers (2024-07-22T20:32:16Z) - CktGNN: Circuit Graph Neural Network for Electronic Design Automation [67.29634073660239]
This paper presents a Circuit Graph Neural Network (CktGNN) that simultaneously automates the circuit topology generation and device sizing.
We introduce Open Circuit Benchmark (OCB), an open-sourced dataset that contains $10$K distinct operational amplifiers.
Our work paves the way toward a learning-based open-sourced design automation for analog circuits.
arXiv Detail & Related papers (2023-08-31T02:20:25Z) - Exploration of superconducting multi-mode cavity architectures for
quantum computing [44.99833362998488]
Superconducting radio-frequency (SRF) cavities coupled to transmon circuits have proven to be a promising platform for building high-coherence quantum information processors.
This paper presents the design optimization process of a multi-cell SRF cavity to perform quantum computation.
arXiv Detail & Related papers (2023-08-22T19:02:23Z) - Adaptive Planning Search Algorithm for Analog Circuit Verification [53.97809573610992]
We propose a machine learning (ML) approach, which uses less simulations.
We show that the proposed approach is able to provide OCCs closer to the specifications for all circuits.
arXiv Detail & Related papers (2023-06-23T12:57:46Z) - Deep-Unfolding for Next-Generation Transceivers [49.338084953253755]
The stringent performance requirements of future wireless networks are spurring studies on defining the next-generation multiple-input multiple-output (MIMO) transceivers.
For the design of advanced transceivers in wireless communications, optimization approaches often leading to iterative algorithms have achieved great success.
Deep learning, approximating the iterative algorithms with deep neural networks (DNNs) can significantly reduce the computational time.
Deep-unfolding has emerged which incorporates the benefits of both deep learning and iterative algorithms, by unfolding the iterative algorithm into a layer-wise structure.
arXiv Detail & Related papers (2023-05-15T02:13:41Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Domain Knowledge-Infused Deep Learning for Automated
Analog/Radio-Frequency Circuit Parameter Optimization [6.599793419469274]
This paper presents a reinforcement learning method to automate the analog circuit parameter optimization.
It is inspired by human experts who rely on domain knowledge of analog circuit design.
Experimental results on exemplary circuits show it achieves human-level design accuracy (99%) 1.5X efficiency of existing best-performing methods.
arXiv Detail & Related papers (2022-04-27T13:58:51Z) - Analog/Mixed-Signal Circuit Synthesis Enabled by the Advancements of
Circuit Architectures and Machine Learning Algorithms [0.0]
We will focus on using neural-network-based surrogate models to expedite the circuit design parameter search and layout iterations.
Lastly, we will demonstrate the rapid synthesis of several AMS circuit examples from specification to silicon prototype, with significantly reduced human intervention.
arXiv Detail & Related papers (2021-12-15T01:47:08Z) - LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers [104.01415343139901]
We propose a deep detector entitled LoRD-Net for recovering information symbols from one-bit measurements.
LoRD-Net has a task-based architecture dedicated to recovering the underlying signal of interest.
We evaluate the proposed receiver architecture for one-bit signal recovery in wireless communications.
arXiv Detail & Related papers (2021-02-05T04:26:05Z) - DeepSIC: Deep Soft Interference Cancellation for Multiuser MIMO
Detection [98.43451011898212]
In multiuser multiple-input multiple-output (MIMO) setups, where multiple symbols are simultaneously transmitted, accurate symbol detection is challenging.
We propose a data-driven implementation of the iterative soft interference cancellation (SIC) algorithm which we refer to as DeepSIC.
DeepSIC learns to carry out joint detection from a limited set of training samples without requiring the channel to be linear.
arXiv Detail & Related papers (2020-02-08T18:31:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.