Drantal-NeRF: Diffusion-Based Restoration for Anti-aliasing Neural Radiance Field
- URL: http://arxiv.org/abs/2407.07461v1
- Date: Wed, 10 Jul 2024 08:32:13 GMT
- Title: Drantal-NeRF: Diffusion-Based Restoration for Anti-aliasing Neural Radiance Field
- Authors: Ganlin Yang, Kaidong Zhang, Jingjing Fu, Dong Liu,
- Abstract summary: Aliasing artifacts in renderings produced by Neural Radiance Field (NeRF) is a long-standing but complex issue.
We present a Diffusion-based restoration method for anti-aliasing Neural Radiance Field (Drantal-NeRF)
- Score: 10.225323718645022
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aliasing artifacts in renderings produced by Neural Radiance Field (NeRF) is a long-standing but complex issue in the field of 3D implicit representation, which arises from a multitude of intricate causes and was mitigated by designing more advanced but complex scene parameterization methods before. In this paper, we present a Diffusion-based restoration method for anti-aliasing Neural Radiance Field (Drantal-NeRF). We consider the anti-aliasing issue from a low-level restoration perspective by viewing aliasing artifacts as a kind of degradation model added to clean ground truths. By leveraging the powerful prior knowledge encapsulated in diffusion model, we could restore the high-realism anti-aliasing renderings conditioned on aliased low-quality counterparts. We further employ a feature-wrapping operation to ensure multi-view restoration consistency and finetune the VAE decoder to better adapt to the scene-specific data distribution. Our proposed method is easy to implement and agnostic to various NeRF backbones. We conduct extensive experiments on challenging large-scale urban scenes as well as unbounded 360-degree scenes and achieve substantial qualitative and quantitative improvements.
Related papers
- Towards Degradation-Robust Reconstruction in Generalizable NeRF [58.33351079982745]
Generalizable Radiance Field (GNeRF) across scenes has been proven to be an effective way to avoid per-scene optimization.
There has been limited research on the robustness of GNeRFs to different types of degradation present in the source images.
arXiv Detail & Related papers (2024-11-18T16:13:47Z) - Taming Latent Diffusion Model for Neural Radiance Field Inpainting [63.297262813285265]
Neural Radiance Field (NeRF) is a representation for 3D reconstruction from multi-view images.
We propose tempering the diffusion model'sity with per-scene customization and mitigating the textural shift with masked training.
Our framework yields state-of-the-art NeRF inpainting results on various real-world scenes.
arXiv Detail & Related papers (2024-04-15T17:59:57Z) - RaFE: Generative Radiance Fields Restoration [38.602849644666165]
NeRF (Neural Radiance Fields) has demonstrated tremendous potential in novel view synthesis and 3D reconstruction.
Previous methods for NeRF restoration are tailored for specific degradation type, ignoring the generality of restoration.
We propose a generic radiance fields restoration pipeline, named RaFE, which applies to various types of degradations.
arXiv Detail & Related papers (2024-04-04T17:59:50Z) - VQ-NeRF: Vector Quantization Enhances Implicit Neural Representations [25.88881764546414]
VQ-NeRF is an efficient pipeline for enhancing implicit neural representations via vector quantization.
We present an innovative multi-scale NeRF sampling scheme that concurrently optimize the NeRF model at both compressed and original scales.
We incorporate a semantic loss function to improve the geometric fidelity and semantic coherence of our 3D reconstructions.
arXiv Detail & Related papers (2023-10-23T01:41:38Z) - Anti-Aliased Neural Implicit Surfaces with Encoding Level of Detail [54.03399077258403]
We present LoD-NeuS, an efficient neural representation for high-frequency geometry detail recovery and anti-aliased novel view rendering.
Our representation aggregates space features from a multi-convolved featurization within a conical frustum along a ray.
arXiv Detail & Related papers (2023-09-19T05:44:00Z) - GANeRF: Leveraging Discriminators to Optimize Neural Radiance Fields [12.92658687936068]
We take advantage of generative adversarial networks (GANs) to produce realistic images and use them to enhance realism in 3D scene reconstruction with NeRFs.
We learn the patch distribution of a scene using an adversarial discriminator, which provides feedback to the radiance field reconstruction.
rendering artifacts are repaired directly in the underlying 3D representation by imposing multi-view path rendering constraints.
arXiv Detail & Related papers (2023-06-09T17:12:35Z) - Delicate Textured Mesh Recovery from NeRF via Adaptive Surface
Refinement [78.48648360358193]
We present a novel framework that generates textured surface meshes from images.
Our approach begins by efficiently initializing the geometry and view-dependency appearance with a NeRF.
We jointly refine the appearance with geometry and bake it into texture images for real-time rendering.
arXiv Detail & Related papers (2023-03-03T17:14:44Z) - ShadowDiffusion: When Degradation Prior Meets Diffusion Model for Shadow
Removal [74.86415440438051]
We propose a unified diffusion framework that integrates both the image and degradation priors for highly effective shadow removal.
Our model achieves a significant improvement in terms of PSNR, increasing from 31.69dB to 34.73dB over SRD dataset.
arXiv Detail & Related papers (2022-12-09T07:48:30Z) - NeRF++: Analyzing and Improving Neural Radiance Fields [117.73411181186088]
Neural Radiance Fields (NeRF) achieve impressive view synthesis results for a variety of capture settings.
NeRF fits multi-layer perceptrons representing view-invariant opacity and view-dependent color volumes to a set of training images.
We address a parametrization issue involved in applying NeRF to 360 captures of objects within large-scale, 3D scenes.
arXiv Detail & Related papers (2020-10-15T03:24:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.