Exploring the Untouched Sweeps for Conflict-Aware 3D Segmentation Pretraining
- URL: http://arxiv.org/abs/2407.07465v2
- Date: Wed, 17 Jul 2024 14:32:55 GMT
- Title: Exploring the Untouched Sweeps for Conflict-Aware 3D Segmentation Pretraining
- Authors: Tianfang Sun, Zhizhong Zhang, Xin Tan, Yanyun Qu, Yuan Xie,
- Abstract summary: LiDAR-camera 3D representation pretraining has shown significant promise for 3D perception tasks and related applications.
We propose a novel Vision-Foundation-Model-driven sample exploring module to meticulously select LiDAR-Image pairs from unexplored frames.
Our method consistently outperforms existing state-of-the-art pretraining frameworks across three major public autonomous driving datasets.
- Score: 41.145598142457686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LiDAR-camera 3D representation pretraining has shown significant promise for 3D perception tasks and related applications. However, two issues widely exist in this framework: 1) Solely keyframes are used for training. For example, in nuScenes, a substantial quantity of unpaired LiDAR and camera frames remain unutilized, limiting the representation capabilities of the pretrained network. 2) The contrastive loss erroneously distances points and image regions with identical semantics but from different frames, disturbing the semantic consistency of the learned presentations. In this paper, we propose a novel Vision-Foundation-Model-driven sample exploring module to meticulously select LiDAR-Image pairs from unexplored frames, enriching the original training set. We utilized timestamps and the semantic priors from VFMs to identify well-synchronized training pairs and to discover samples with diverse content. Moreover, we design a cross- and intra-modal conflict-aware contrastive loss using the semantic mask labels of VFMs to avoid contrasting semantically similar points and image regions. Our method consistently outperforms existing state-of-the-art pretraining frameworks across three major public autonomous driving datasets: nuScenes, SemanticKITTI, and Waymo on 3D semantic segmentation by +3.0\%, +3.0\%, and +3.3\% in mIoU, respectively. Furthermore, our approach exhibits adaptable generalization to different 3D backbones and typical semantic masks generated by non-VFM models.
Related papers
- Hierarchical Temporal Context Learning for Camera-based Semantic Scene Completion [57.232688209606515]
We present HTCL, a novel Temporal Temporal Context Learning paradigm for improving camera-based semantic scene completion.
Our method ranks $1st$ on the Semantic KITTI benchmark and even surpasses LiDAR-based methods in terms of mIoU.
arXiv Detail & Related papers (2024-07-02T09:11:17Z) - Fine-grained Image-to-LiDAR Contrastive Distillation with Visual Foundation Models [55.99654128127689]
Visual Foundation Models (VFMs) are used to enhance 3D representation learning.
VFMs generate semantic labels for weakly-supervised pixel-to-point contrastive distillation.
We adapt sampling probabilities of points to address imbalances in spatial distribution and category frequency.
arXiv Detail & Related papers (2024-05-23T07:48:19Z) - Building a Strong Pre-Training Baseline for Universal 3D Large-Scale Perception [41.77153804695413]
An effective pre-training framework with universal 3D representations is extremely desired in perceiving large-scale dynamic scenes.
We propose a CSC framework that puts a scene-level semantic consistency in the heart, bridging the connection of the similar semantic segments across various scenes.
arXiv Detail & Related papers (2024-05-12T07:58:52Z) - Visual Foundation Models Boost Cross-Modal Unsupervised Domain Adaptation for 3D Semantic Segmentation [17.875516787157018]
We study how to harness the knowledge priors learned by 2D visual foundation models to produce more accurate labels for unlabeled target domains.
Our method is evaluated on various autonomous driving datasets and the results demonstrate a significant improvement for 3D segmentation task.
arXiv Detail & Related papers (2024-03-15T03:58:17Z) - TAMM: TriAdapter Multi-Modal Learning for 3D Shape Understanding [28.112402580426174]
TriAdapter Multi-Modal Learning (TAMM) is a novel two-stage learning approach based on three synergistic adapters.
TAMM consistently enhances 3D representations for a wide range of 3D encoder architectures, pre-training datasets, and downstream tasks.
arXiv Detail & Related papers (2024-02-28T17:18:38Z) - RadOcc: Learning Cross-Modality Occupancy Knowledge through Rendering
Assisted Distillation [50.35403070279804]
3D occupancy prediction is an emerging task that aims to estimate the occupancy states and semantics of 3D scenes using multi-view images.
We propose RadOcc, a Rendering assisted distillation paradigm for 3D Occupancy prediction.
arXiv Detail & Related papers (2023-12-19T03:39:56Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
We present a novel framework that adapts various foundational models for the 3D point cloud segmentation task.
Our approach involves making initial predictions of 2D semantic masks using different large vision models.
To generate robust 3D semantic pseudo labels, we introduce a semantic label fusion strategy that effectively combines all the results via voting.
arXiv Detail & Related papers (2023-11-03T15:41:15Z) - Promise:Prompt-driven 3D Medical Image Segmentation Using Pretrained
Image Foundation Models [13.08275555017179]
We propose ProMISe, a prompt-driven 3D medical image segmentation model using only a single point prompt.
We evaluate our model on two public datasets for colon and pancreas tumor segmentations.
arXiv Detail & Related papers (2023-10-30T16:49:03Z) - CroCo: Self-Supervised Pre-training for 3D Vision Tasks by Cross-View
Completion [20.121597331207276]
Masked Image Modeling (MIM) has recently been established as a potent pre-training paradigm.
In this paper we seek to learn representations that transfer well to a wide variety of 3D vision and lower-level geometric downstream tasks.
Our experiments show that our pretext task leads to significantly improved performance for monocular 3D vision downstream tasks.
arXiv Detail & Related papers (2022-10-19T16:50:36Z) - Unsupervised Cross-Modal Alignment for Multi-Person 3D Pose Estimation [52.94078950641959]
We present a deployment friendly, fast bottom-up framework for multi-person 3D human pose estimation.
We adopt a novel neural representation of multi-person 3D pose which unifies the position of person instances with their corresponding 3D pose representation.
We propose a practical deployment paradigm where paired 2D or 3D pose annotations are unavailable.
arXiv Detail & Related papers (2020-08-04T07:54:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.