論文の概要: Zero-Shot Class Unlearning in CLIP with Synthetic Samples
- arxiv url: http://arxiv.org/abs/2407.07485v1
- Date: Wed, 10 Jul 2024 09:16:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 17:21:34.994955
- Title: Zero-Shot Class Unlearning in CLIP with Synthetic Samples
- Title(参考訳): 合成サンプルを用いたCLIPにおけるゼロショットクラスアンラーニング
- Authors: A. Kravets, V. Namboodiri,
- Abstract要約: 私たちは、画像テキストペアの巨大なデータセットに基づいてトレーニングされたデュアルビジョン言語モデルであるCLIP内でのアンラーニングに重点を置いています。
リプシッツ正則化をCLIPのマルチモーダル文脈に適用する。
我々の忘れる手順は反復的であり、合成された忘れ物セットの精度を追跡し、選択された閾値未満の精度で停止する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine unlearning is a crucial area of research. It is driven by the need to remove sensitive information from models to safeguard individuals' right to be forgotten under rigorous regulations such as GDPR. In this work, we focus on unlearning within CLIP, a dual vision-language encoder model trained on a massive dataset of image-text pairs using contrastive loss. To achieve forgetting we expand the application of Lipschitz regularization to the multimodal context of CLIP. Specifically, we ensure the smoothing of both visual and textual embeddings associated with the class intended to be forgotten relative to the perturbation introduced to the samples from that class. Additionally, importantly, we remove the necessity for real forgetting data by generating synthetic samples through gradient ascent maximizing the target class. Our forgetting procedure is iterative, where we track accuracy on a synthetic forget set and stop when accuracy falls below a chosen threshold. We employ a selective layers update strategy based on their average absolute gradient value to mitigate over-forgetting. We validate our approach on several standard datasets and provide thorough ablation analysis and comparisons with previous work.
- Abstract(参考訳): 機械学習は研究の重要な領域である。
GDPRのような厳格な規制の下で、個人が忘れられる権利を保護するために、モデルから機密情報を除去する必要がある。
本研究では,コントラッシブ・ロスを用いた画像テキスト・ペアの大規模データセットに基づいてトレーニングされた,二重視覚言語エンコーダモデルであるCLIP内のアンラーニングに焦点を当てた。
リプシッツ正則化の応用をCLIPのマルチモーダルコンテキストに拡張する。
具体的には,そのクラスからのサンプルに導入された摂動に対して,そのクラスに関連付けられた視覚的およびテキスト的埋め込みの平滑化を確保する。
さらに, 対象クラスを最大化する勾配を経た合成サンプルを生成することにより, 実際の忘れデータの必要性を解消する。
我々の忘れる手順は反復的であり、合成された忘れ物セットの精度を追跡し、選択された閾値未満の精度で停止する。
オーバーフォッゲッティングを緩和するために、平均的な絶対勾配値に基づいて選択的なレイヤ更新戦略を採用する。
提案手法をいくつかの標準データセットで検証し,従来の研究と徹底的なアブレーション分析と比較を行った。
関連論文リスト
- Partially Blinded Unlearning: Class Unlearning for Deep Networks a Bayesian Perspective [4.31734012105466]
マシン・アンラーニング(英: Machine Unlearning)とは、特定のデータセットやクラスに指定された情報を事前訓練されたモデルから選択的に破棄するプロセスである。
本研究では,事前学習した分類ネットワークから,特定の種類のデータに関連付けられた情報の目的的除去に適した手法を提案する。
本手法は,従来の最先端の未学習手法を超越し,優れた有効性を示す。
論文 参考訳(メタデータ) (2024-03-24T17:33:22Z) - An Information Theoretic Approach to Machine Unlearning [45.600917449314444]
学びの鍵となる課題は、モデルのパフォーマンスを保ちながら、必要なデータをタイムリーに忘れることである。
この研究では、ゼロショットのアンラーニングシナリオに対処し、未学習のアルゴリズムは、トレーニングされたモデルと忘れられるデータだけが与えられたデータを削除できなければならない。
モデルの幾何に基づいて、単純だが原則化されたゼロショットアンラーニング法を導出する。
論文 参考訳(メタデータ) (2024-02-02T13:33:30Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - Combating Label Noise With A General Surrogate Model For Sample
Selection [84.61367781175984]
本稿では,視覚言語サロゲートモデルCLIPを用いて,雑音の多いサンプルを自動的にフィルタリングする手法を提案する。
提案手法の有効性を実世界および合成ノイズデータセットで検証した。
論文 参考訳(メタデータ) (2023-10-16T14:43:27Z) - Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
ラベルなしデータセットを、効率的な自己教師付き学習(SSL)のための小さな合成サンプル群に蒸留する新しい問題を提案する。
両レベル最適化におけるSSL目標に対する合成サンプルの勾配は、データ拡張やマスキングから生じるランダム性から、テキストバイアスを受けていることを最初に証明する。
転送学習を含む様々な応用における本手法の有効性を実証的に検証する。
論文 参考訳(メタデータ) (2023-10-10T10:48:52Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
対照的に、CLIP(Language-image Pre-training)モデルでは、印象的なゼロショット能力を示しているが、下流タスクにおけるCLIPのさらなる適応は、OODのパフォーマンスを好ましくない劣化させる。
ドメインシフトとオープンクラスの両方が見えないテストデータ上で発生する可能性があるOOD状況にCLIPモデルを適用するための微調整手法であるCLIPoodを提案する。
さまざまなOODシナリオによるさまざまなデータセットの実験は、CLIPoodが既存の一般化テクニックを一貫して上回っていることを示している。
論文 参考訳(メタデータ) (2023-02-02T04:27:54Z) - Supervised Contrastive Learning for Pre-trained Language Model
Fine-tuning [23.00300794016583]
最先端の自然言語理解分類モデルは2段階に従う。
微調整段階に対する教師付きコントラスト学習(SCL)の目的を提案する。
提案した微調整目的は、微調整訓練データにおいて、異なるレベルのノイズに対してより堅牢なモデルに導かれる。
論文 参考訳(メタデータ) (2020-11-03T01:10:39Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
本稿では, ラベル付きデータとラベルなしデータの両方を, 知識蒸留による精度向上に活用することを提案する。
摂動に敏感なサンプルマイニングを用いたマスク誘導型平均教師フレームワークを提案する。
実験の結果,ラベル付きデータのみから学習した教師付き手法と比較して,提案手法は性能を著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-21T13:27:09Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
部分ラベル学習(Partial-label Learning, PLL)は、典型的な弱教師付き学習問題であり、各トレーニングインスタンスには、真のラベルである候補ラベルのセットが設けられている。
既存のほとんどの手法は、特定の方法で解決しなければならない制約付き最適化として精巧に設計されており、計算複雑性をビッグデータにスケールアップするボトルネックにしている。
本稿では,モデルと最適化アルゴリズムの柔軟性を備えた分類器の新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T08:35:15Z) - Rethinking Curriculum Learning with Incremental Labels and Adaptive
Compensation [35.593312267921256]
人間と同様に、ディープネットワークは、サンプルが組織化され、意味のある順序やカリキュラムで導入されたときに、よりよく学習することが示されている。
インクリメンタルラベルと適応補償を用いた学習(LILAC)を提案する。
論文 参考訳(メタデータ) (2020-01-13T21:00:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。