論文の概要: Fine-Grained Classification for Poisonous Fungi Identification with Transfer Learning
- arxiv url: http://arxiv.org/abs/2407.07492v1
- Date: Wed, 10 Jul 2024 09:24:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 17:11:48.822835
- Title: Fine-Grained Classification for Poisonous Fungi Identification with Transfer Learning
- Title(参考訳): トランスファーラーニングを用いた毒菌同定のための微粒化分類法
- Authors: Christopher Chiu, Maximilian Heil, Teresa Kim, Anthony Miyaguchi,
- Abstract要約: FungiCLEF 2024は、真菌種のきめ細かい視覚分類(FGVC)に対処する。
提案手法は,試験後評価において,最高トラック3スコア (0.345), 精度 (78.4%), マクロF1スコア (0.577) を達成した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: FungiCLEF 2024 addresses the fine-grained visual categorization (FGVC) of fungi species, with a focus on identifying poisonous species. This task is challenging due to the size and class imbalance of the dataset, subtle inter-class variations, and significant intra-class variability amongst samples. In this paper, we document our approach in tackling this challenge through the use of ensemble classifier heads on pre-computed image embeddings. Our team (DS@GT) demonstrate that state-of-the-art self-supervised vision models can be utilized as robust feature extractors for downstream application of computer vision tasks without the need for task-specific fine-tuning on the vision backbone. Our approach achieved the best Track 3 score (0.345), accuracy (78.4%) and macro-F1 (0.577) on the private test set in post competition evaluation. Our code is available at https://github.com/dsgt-kaggle-clef/fungiclef-2024.
- Abstract(参考訳): FungiCLEF 2024は、真菌種のきめ細かい視覚分類(FGVC)に対処し、有毒種を同定することに焦点を当てている。
このタスクは、データセットのサイズとクラス不均衡、微妙なクラス間のバリエーション、サンプル間のクラス内の大きなばらつきのため、難しい。
本稿では,事前に計算した画像の埋め込みに対して,アンサンブル分類器ヘッドを用いてこの問題に対処するアプローチについて述べる。
我々のチーム(DS@GT)は、コンピュータビジョンタスクの下流でのタスク固有の微調整を必要とせずに、最先端の自己監督型ビジョンモデルを堅牢な特徴抽出器として活用できることを実証した。
提案手法は,試験後評価において,最高トラック3スコア (0.345), 精度 (78.4%), マクロF1スコア (0.577) を達成した。
私たちのコードはhttps://github.com/dsgt-kaggle-clef/fungiclef-2024で公開されています。
関連論文リスト
- Zero-shot Model Diagnosis [80.36063332820568]
ディープラーニングモデルを評価するための一般的なアプローチは、興味のある属性を持つラベル付きテストセットを構築し、そのパフォーマンスを評価することである。
本稿では,ゼロショットモデル診断(ZOOM)がテストセットやラベル付けを必要とせずに可能であることを論じる。
論文 参考訳(メタデータ) (2023-03-27T17:59:33Z) - Augment and Criticize: Exploring Informative Samples for Semi-Supervised
Monocular 3D Object Detection [64.65563422852568]
我々は、一般的な半教師付きフレームワークを用いて、難解な単分子3次元物体検出問題を改善する。
我々は、ラベルのないデータから豊富な情報的サンプルを探索する、新しい、シンプルで効果的なAugment and Criticize'フレームワークを紹介します。
3DSeMo_DLEと3DSeMo_FLEXと呼ばれる2つの新しい検出器は、KITTIのAP_3D/BEV(Easy)を3.5%以上改善した。
論文 参考訳(メタデータ) (2023-03-20T16:28:15Z) - Fine-Grained Hard Negative Mining: Generalizing Mitosis Detection with a
Fifth of the MIDOG 2022 Dataset [1.2183405753834562]
ミトーシス領域一般化チャレンジ2022(MIDOG)の深層学習ソリューションについて述べる。
我々のアプローチは、アグレッシブデータ拡張を用いた回転不変深層学習モデルの訓練である。
我々のモデルアンサンブルは、自動評価後の最終テストセットで.697のF1スコアを達成した。
論文 参考訳(メタデータ) (2023-01-03T13:06:44Z) - Information Gain Sampling for Active Learning in Medical Image
Classification [3.1619162190378787]
本研究は,ラベル付け対象プールからの最適な画像選択を誘導する情報理論のアクティブラーニングフレームワークを提案する。
2つの異なる医用画像分類データセットで実験を行う。
論文 参考訳(メタデータ) (2022-08-01T16:25:53Z) - Dynamic Sub-Cluster-Aware Network for Few-Shot Skin Disease
Classification [31.539129126161978]
本稿では,まれな皮膚疾患の診断における精度を高めるためのサブクラスタ・アウェア・ネットワーク(SCAN)という新しいアプローチを提案する。
SCANの設計を動機づける重要な洞察は、クラス内の皮膚疾患の画像が複数のサブクラスタを示すことが多いという観察である。
数発の皮膚疾患分類のための2つのパブリックデータセットに対する提案手法の評価を行った。
論文 参考訳(メタデータ) (2022-07-03T16:06:04Z) - Masked Unsupervised Self-training for Zero-shot Image Classification [98.23094305347709]
Masked Unsupervised Self-Training (MUST)は、疑似ラベルと生画像という2つの異なる、補完的な監督源を活用する新しいアプローチである。
MUSTはCLIPを大きなマージンで改善し、教師なしと教師なしの分類のパフォーマンスギャップを狭める。
論文 参考訳(メタデータ) (2022-06-07T02:03:06Z) - SCARF: Self-Supervised Contrastive Learning using Random Feature
Corruption [72.35532598131176]
本稿では,特徴のランダムなサブセットを乱してビューを形成するコントラスト学習手法であるSCARFを提案する。
SCARFは既存の戦略を補完し、オートエンコーダのような代替手段より優れていることを示す。
論文 参考訳(メタデータ) (2021-06-29T08:08:33Z) - Enhancing Fine-Grained Classification for Low Resolution Images [97.82441158440527]
低解像度画像は、限られた情報内容の固有の課題と、サブカテゴリ分類に有用な詳細の欠如に悩まされる。
本研究では,補助情報を用いて分類の識別的特徴を学習する,新たな属性支援損失を提案する。
提案する損失関数により、モデルは属性レベルの分離性を取り入れながら、クラス固有の識別特徴を学習することができる。
論文 参考訳(メタデータ) (2021-05-01T13:19:02Z) - Danish Fungi 2020 -- Not Just Another Image Recognition Dataset [0.0]
デンマークのFungi 2020(DF20)という新しいきめ細かいデータセットとベンチマークを紹介します。
データセットはデンマークの菌類アトラスに提出された観測結果から構築されている。
df20はimagenetと重複しないため、imagenetの公開チェックポイントから微調整されたモデルの偏りのない比較が可能になる。
論文 参考訳(メタデータ) (2021-03-18T09:33:11Z) - Learning Invariant Representations across Domains and Tasks [81.30046935430791]
本稿では,この教師なしタスク転送問題を解決するための新しいタスク適応ネットワーク(tan)を提案する。
ドメイン・アドバーサル・トレーニングによる伝達可能な機能を学習することに加えて、学習から学習への戦略を用いてタスクの意味を適応させる新しいタスク・セマンティクス・アダプタを提案する。
TANは最近の強いベースラインに比べてリコールとF1スコアを5.0%と7.8%大きく向上させた。
論文 参考訳(メタデータ) (2021-03-03T11:18:43Z) - Deep learning-based computer vision to recognize and classify suturing
gestures in robot-assisted surgery [9.248851083946048]
我々は深層学習に基づくコンピュータビジョン(CV)を訓練し、針駆動の試みのための縫合ジェスチャーの識別と分類を自動化する。
以上の結果から,縫合動作を識別できるだけでなく,縫合動作の異なる分類を区別できる特徴をCVが認識できることが示唆された。
論文 参考訳(メタデータ) (2020-08-26T21:45:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。