論文の概要: Turbo your multi-modal classification with contrastive learning
- arxiv url: http://arxiv.org/abs/2409.09282v1
- Date: Sat, 14 Sep 2024 03:15:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 21:29:12.303063
- Title: Turbo your multi-modal classification with contrastive learning
- Title(参考訳): コントラスト学習によるマルチモーダル分類のターボ化
- Authors: Zhiyu Zhang, Da Liu, Shengqiang Liu, Anna Wang, Jie Gao, Yali Li,
- Abstract要約: 本稿では,マルチモーダル理解を促進するために,$Turbo$と呼ばれる新しいコントラスト学習戦略を提案する。
具体的には、マルチモーダルデータペアは、異なる隠されたドロップアウトマスクでフォワードパスを2回送って、各モダリティに対して2つの異なる表現を得る。
これらの表現により、トレーニングのための複数のインモーダルおよびクロスモーダルのコントラスト目的が得られる。
- 参考スコア(独自算出の注目度): 17.983460380784337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contrastive learning has become one of the most impressive approaches for multi-modal representation learning. However, previous multi-modal works mainly focused on cross-modal understanding, ignoring in-modal contrastive learning, which limits the representation of each modality. In this paper, we propose a novel contrastive learning strategy, called $Turbo$, to promote multi-modal understanding by joint in-modal and cross-modal contrastive learning. Specifically, multi-modal data pairs are sent through the forward pass twice with different hidden dropout masks to get two different representations for each modality. With these representations, we obtain multiple in-modal and cross-modal contrastive objectives for training. Finally, we combine the self-supervised Turbo with the supervised multi-modal classification and demonstrate its effectiveness on two audio-text classification tasks, where the state-of-the-art performance is achieved on a speech emotion recognition benchmark dataset.
- Abstract(参考訳): コントラスト学習は、マルチモーダル表現学習における最も印象的なアプローチの1つとなっている。
しかし、従来のマルチモーダルな研究は、主にモダリティの表現を制限する非モーダルコントラスト学習を無視して、モダリティ間の理解に焦点を当てていた。
本稿では,共同学習と相互学習によるマルチモーダル理解を促進するために,新たなコントラスト学習戦略である$Turbo$を提案する。
具体的には、マルチモーダルデータペアは、異なる隠されたドロップアウトマスクでフォワードパスを2回送って、各モダリティに対して2つの異なる表現を得る。
これらの表現により、トレーニングのための複数のインモーダルおよびクロスモーダルのコントラスト目的が得られる。
最後に、教師付きマルチモーダル分類と自己教師付きターボを併用し、2つの音声テキスト分類タスクにおいてその効果を示す。
関連論文リスト
- Learning Robust Anymodal Segmentor with Unimodal and Cross-modal Distillation [30.33381342502258]
主な課題はユニモーダルバイアス(unimodal bias)であり、マルチモーダルセグメンタが特定のモダリティに依存しているため、他のセグメンタが欠落するとパフォーマンスが低下する。
視覚的モダリティの組み合わせを扱える頑健なセグメンタを学習するための最初のフレームワークを開発する。
論文 参考訳(メタデータ) (2024-11-26T06:15:27Z) - On the Comparison between Multi-modal and Single-modal Contrastive Learning [50.74988548106031]
マルチモーダルとシングルモーダルのコントラスト学習の違いを理解するための理論的基盤を導入する。
マルチモーダル・シングルモーダル・コントラッシブ・ラーニングの下流タスクにおける一般化に影響を及ぼす臨界因子,すなわち信号対雑音比(SNR)を同定する。
我々の分析は、単一モードと多モードのコントラスト学習の最適化と一般化を特徴付ける統一的なフレームワークを提供する。
論文 参考訳(メタデータ) (2024-11-05T06:21:17Z) - Multi-modal Crowd Counting via a Broker Modality [64.5356816448361]
マルチモーダルな群衆カウントは、視覚画像と熱/深度画像の両方から群衆密度を推定する。
本稿では,補助的ブローカーのモダリティを導入し,そのタスクを3つのモーダル学習問題とする新しい手法を提案する。
我々はこのブローカーのモダリティを生成するための融合法を考案し、近代的な拡散に基づく核融合モデルの非拡散的軽量化を生かした。
論文 参考訳(メタデータ) (2024-07-10T10:13:11Z) - Generative Multimodal Models are In-Context Learners [60.50927925426832]
我々は37億のパラメータを持つ生成的マルチモーダルモデルであるEmu2を紹介し、大規模マルチモーダルシーケンスで訓練する。
Emu2は、マルチモーダルなインコンテキスト学習能力を示し、オンザフライ推論を必要とするタスクを解決しようとさえしている。
論文 参考訳(メタデータ) (2023-12-20T18:59:58Z) - Multimodal Representation Learning by Alternating Unimodal Adaptation [73.15829571740866]
MLA(Multimodal Learning with Alternating Unimodal Adaptation)を提案する。
MLAは、それを交互に一助学習プロセスに変換することで、従来の共同マルチモーダル学習プロセスを再構築する。
共有ヘッドを通じてモーダル間相互作用をキャプチャし、異なるモーダル間で連続的な最適化を行う。
実験は5つの多様なデータセットで行われ、完全なモダリティを持つシナリオと、欠落したモダリティを持つシナリオを含む。
論文 参考訳(メタデータ) (2023-11-17T18:57:40Z) - Improving Unimodal Inference with Multimodal Transformers [88.83765002648833]
提案手法は,マルチモーダルトランスフォーマーをベースとした単一モーダルモデルを組み込んだマルチブランチアーキテクチャである。
これらの枝を共に訓練することにより、より強いマルチモーダル枝は、その知識をより弱いユニモーダル枝にマルチタスクの目的を通して移すことができる。
本稿では,RGBとDepthに基づく動的手動作認識,音声・顔画像に基づく音声視覚的感情認識,音声・音声音声による感情分析の課題について検討する。
論文 参考訳(メタデータ) (2023-11-16T19:53:35Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
教師なしの事前訓練は骨格に基づく行動理解において大きな成功を収めた。
我々はUmURLと呼ばれる統一マルチモーダル非教師なし表現学習フレームワークを提案する。
UmURLは効率的な早期融合戦略を利用して、マルチモーダル機能を単一ストリームで共同でエンコードする。
論文 参考訳(メタデータ) (2023-11-06T13:56:57Z) - UniS-MMC: Multimodal Classification via Unimodality-supervised
Multimodal Contrastive Learning [29.237813880311943]
本稿では, より信頼性の高いマルチモーダル表現を, 非モーダル予測の弱い監督下で探索する新しいマルチモーダルコントラスト法を提案する。
2つの画像テキスト分類ベンチマークにおける融合特徴を用いた実験結果から,提案手法が現在最先端のマルチモーダル手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-05-16T09:18:38Z) - On Uni-Modal Feature Learning in Supervised Multi-Modal Learning [21.822251958013737]
マルチモーダルデータの特徴(つまり学習された表現)を,1)ユニモーダルな特徴と2)相互モーダルな相互作用からしか学べないペア化された特徴にまとめる。
簡単な誘導戦略により、様々なマルチモーダルデータセット上の他の複雑なレイトフュージョン法や中間フュージョン法に匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2023-05-02T07:15:10Z) - Multimodal Contrastive Learning via Uni-Modal Coding and Cross-Modal
Prediction for Multimodal Sentiment Analysis [19.07020276666615]
本稿では,マルチモーダル表現のためのMMCL(MultiModal Contrastive Learning)というフレームワークを提案する。
また、予測のプロセスを促進し、感情に関連するよりインタラクティブな情報を学ぶために、事例ベースと感情ベースのコントラスト学習という2つのコントラスト学習タスクを設計する。
論文 参考訳(メタデータ) (2022-10-26T08:24:15Z) - Learning Modality-Specific Representations with Self-Supervised
Multi-Task Learning for Multimodal Sentiment Analysis [11.368438990334397]
我々は,独立した一助的指導を受けるための自己指導型学習戦略を開発する。
我々は3つの公開マルチモーダルベースラインデータセットについて広範な実験を行った。
提案手法は,人間の注釈付きアンモダルラベルと同等の性能を達成している。
論文 参考訳(メタデータ) (2021-02-09T14:05:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。