論文の概要: Let Occ Flow: Self-Supervised 3D Occupancy Flow Prediction
- arxiv url: http://arxiv.org/abs/2407.07587v1
- Date: Wed, 10 Jul 2024 12:20:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 16:51:55.688969
- Title: Let Occ Flow: Self-Supervised 3D Occupancy Flow Prediction
- Title(参考訳): Occ Flow: 自己監督型3D作業フロー予測
- Authors: Yili Liu, Linzhan Mou, Xuan Yu, Chenrui Han, Sitong Mao, Rong Xiong, Yue Wang,
- Abstract要約: Occ Flowは、カメラ入力のみを使用して、関節の3D占有率と占有率の予測を行う最初の自己教師型作業である。
提案手法では,動的オブジェクト依存を捉えるために,後向きの時間的アテンションモジュールを組み込んでおり,次いで3次元洗練されたボリューム表現を行う。
- 参考スコア(独自算出の注目度): 14.866463843514156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate perception of the dynamic environment is a fundamental task for autonomous driving and robot systems. This paper introduces Let Occ Flow, the first self-supervised work for joint 3D occupancy and occupancy flow prediction using only camera inputs, eliminating the need for 3D annotations. Utilizing TPV for unified scene representation and deformable attention layers for feature aggregation, our approach incorporates a backward-forward temporal attention module to capture dynamic object dependencies, followed by a 3D refine module for fine-gained volumetric representation. Besides, our method extends differentiable rendering to 3D volumetric flow fields, leveraging zero-shot 2D segmentation and optical flow cues for dynamic decomposition and motion optimization. Extensive experiments on nuScenes and KITTI datasets demonstrate the competitive performance of our approach over prior state-of-the-art methods.
- Abstract(参考訳): 動的環境の正確な認識は、自律運転とロボットシステムの基本課題である。
本稿では, カメラ入力のみを用いて, 3Dアノテーションの必要をなくし, 関節の3D占有率と占有率の予測を行う最初の自己教師型作業であるLet Occ Flowを紹介する。
本手法では,統合されたシーン表現のためのTPVと,特徴集約のための変形可能なアテンション層を用いて,動的オブジェクトの依存関係をキャプチャするための後方向きの時間的アテンションモジュールと,詳細なボリューム表現のための3Dリファインメントモジュールを併用する。
さらに, 動的分解と運動最適化のために, ゼロショット2次元セグメンテーションと光学フローキューを活用することで, 3次元フロー場に微分可能レンダリングを拡張した。
nuScenesとKITTIデータセットに関する大規模な実験は、従来の最先端手法に対する我々のアプローチの競争性能を実証している。
関連論文リスト
- AdaOcc: Adaptive Forward View Transformation and Flow Modeling for 3D Occupancy and Flow Prediction [56.72301849123049]
CVPR 2024 における nuScenes Open-Occ データセットチャレンジにおいて,視覚中心の3次元活動とフロー予測トラックのソリューションを提案する。
我々の革新的なアプローチは、適応的なフォワード・ビュー・トランスフォーメーションとフロー・モデリングを取り入れることで、3次元の占有率とフロー予測を向上させる2段階のフレームワークである。
提案手法は回帰と分類を組み合わせることで,様々な場面におけるスケールの変動に対処し,予測フローを利用して将来のフレームに現行のボクセル特徴をワープする。
論文 参考訳(メタデータ) (2024-07-01T16:32:15Z) - Motion-aware 3D Gaussian Splatting for Efficient Dynamic Scene Reconstruction [89.53963284958037]
動的シーン再構築のための新しい動き認識拡張フレームワークを提案する。
具体的には,まず3次元ガウス運動と画素レベルの流れの対応性を確立する。
より厳密な最適化問題を示す先行的な変形に基づくパラダイムに対して,過渡対応変形補助モジュールを提案する。
論文 参考訳(メタデータ) (2024-03-18T03:46:26Z) - OccFlowNet: Towards Self-supervised Occupancy Estimation via
Differentiable Rendering and Occupancy Flow [0.6577148087211809]
本稿では,2次元ラベルのみを用いたニューラルレイディアンス場(NeRF)による占有率推定手法を提案する。
深度とセマンティックマップの予測や,2次元監視のみに基づく3次元ネットワークのトレーニングには,可変ボリュームレンダリングを用いる。
論文 参考訳(メタデータ) (2024-02-20T08:04:12Z) - EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via
Self-Supervision [85.17951804790515]
EmerNeRFは動的駆動シーンの時空間表現を学習するためのシンプルだが強力なアプローチである。
シーンの幾何学、外観、動き、セマンティクスを自己ブートストラップで同時にキャプチャする。
本手法はセンサシミュレーションにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2023-11-03T17:59:55Z) - Dyna-DepthFormer: Multi-frame Transformer for Self-Supervised Depth
Estimation in Dynamic Scenes [19.810725397641406]
シーン深度と3次元運動場を協調的に予測する新しいDyna-Depthformerフレームワークを提案する。
まず,多視点の相関を一連の自己・横断的層を通じて活用し,深度特徴表現の強化を図る。
第2に,動的物体の運動場をセマンティック・プレセプションを使わずに推定するワーピングに基づく運動ネットワークを提案する。
論文 参考訳(メタデータ) (2023-01-14T09:43:23Z) - 3D Object Detection with a Self-supervised Lidar Scene Flow Backbone [10.341296683155973]
本稿では,下流3次元視覚タスクのための汎用クラウドバックボーンモデルを学習するために,自己指導型トレーニング戦略を提案する。
我々の主な貢献は、学習の流れと動きの表現を活用し、自己教師付きバックボーンと3D検出ヘッドを組み合わせることである。
KITTIとnuScenesベンチマークの実験により、提案した自己教師付き事前学習は3次元検出性能を著しく向上させることが示された。
論文 参考訳(メタデータ) (2022-05-02T07:53:29Z) - Exploring Optical-Flow-Guided Motion and Detection-Based Appearance for
Temporal Sentence Grounding [61.57847727651068]
テンポラルな文グラウンドディングは、与えられた文クエリに従って、意図しないビデオのターゲットセグメントをセマンティックにローカライズすることを目的としている。
これまでのほとんどの研究は、ビデオ全体のフレーム全体のフレームレベルの特徴を学習することに集中しており、それらをテキスト情報と直接一致させる。
我々は,光フロー誘導型モーションアウェア,検出ベース外観アウェア,3D認識オブジェクトレベル機能を備えた,動き誘導型3Dセマンティック推論ネットワーク(MA3SRN)を提案する。
論文 参考訳(メタデータ) (2022-03-06T13:57:09Z) - Learning Monocular Depth in Dynamic Scenes via Instance-Aware Projection
Consistency [114.02182755620784]
本稿では,複数の動的物体の6-DoF動作,エゴモーション,深度を,監督なしで一眼レフカメラで明示的にモデル化する,エンドツーエンドのジョイントトレーニングフレームワークを提案する。
筆者らのフレームワークは,最先端の深度・動き推定法より優れていた。
論文 参考訳(メタデータ) (2021-02-04T14:26:42Z) - Learning to Segment Rigid Motions from Two Frames [72.14906744113125]
本研究では, 運動場から独立物体の動きを復元する幾何学的解析により, モジュラーネットワークを提案する。
2つの連続フレームを入力とし、背景のセグメンテーションマスクと複数の剛体移動オブジェクトを予測し、3次元の剛体変換によってパラメータ化する。
本手法はkittiおよびsintelにおける剛体運動セグメンテーションの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-01-11T04:20:30Z) - Hierarchical Attention Learning of Scene Flow in 3D Point Clouds [28.59260783047209]
本稿では,2つの連続する3次元点雲からのシーンフロー推定の問題について検討する。
隣接フレームにおける点特徴の相関を学習するために, 二重注意を有する新しい階層型ニューラルネットワークを提案する。
実験の結果,提案したネットワークは3次元シーンフロー推定の最先端性能より優れていた。
論文 参考訳(メタデータ) (2020-10-12T14:56:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。