Early Explorations of Lightweight Models for Wound Segmentation on Mobile Devices
- URL: http://arxiv.org/abs/2407.07605v3
- Date: Fri, 30 Aug 2024 08:36:36 GMT
- Title: Early Explorations of Lightweight Models for Wound Segmentation on Mobile Devices
- Authors: Vanessa Borst, Timo Dittus, Konstantin Müller, Samuel Kounev,
- Abstract summary: Aging population poses numerous challenges to healthcare, including the increase in chronic wounds in the elderly.
Current approach to wound assessment by therapists is subjective, highlighting the need for computer-aided wound recognition from smartphone photos.
We conduct initial research on three lightweight architectures to investigate their suitability for smartphone-based wound segmentation.
- Score: 2.5366917759824017
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The aging population poses numerous challenges to healthcare, including the increase in chronic wounds in the elderly. The current approach to wound assessment by therapists based on photographic documentation is subjective, highlighting the need for computer-aided wound recognition from smartphone photos. This offers objective and convenient therapy monitoring, while being accessible to patients from their home at any time. However, despite research in mobile image segmentation, there is a lack of focus on mobile wound segmentation. To address this gap, we conduct initial research on three lightweight architectures to investigate their suitability for smartphone-based wound segmentation. Using public datasets and UNet as a baseline, our results are promising, with both ENet and TopFormer, as well as the larger UNeXt variant, showing comparable performance to UNet. Furthermore, we deploy the models into a smartphone app for visual assessment of live segmentation, where results demonstrate the effectiveness of TopFormer in distinguishing wounds from wound-coloured objects. While our study highlights the potential of transformer models for mobile wound segmentation, future work should aim to further improve the mask contours.
Related papers
- Efficient MedSAMs: Segment Anything in Medical Images on Laptop [69.28565867103542]
We organized the first international competition dedicated to promptable medical image segmentation.
The top teams developed lightweight segmentation foundation models and implemented an efficient inference pipeline.
The best-performing algorithms have been incorporated into the open-source software with a user-friendly interface to facilitate clinical adoption.
arXiv Detail & Related papers (2024-12-20T17:33:35Z) - Benchmarking Pretrained Attention-based Models for Real-Time Recognition in Robot-Assisted Esophagectomy [2.847280871973632]
Esophageal cancer is among the most common types of cancer worldwide.
In recent years, robot-assisted minimally invasive esophagectomy has emerged as a promising alternative.
Computer-aided anatomy recognition holds promise for improving surgical navigation.
arXiv Detail & Related papers (2024-12-04T15:32:37Z) - Classifying Simulated Gait Impairments using Privacy-preserving Explainable Artificial Intelligence and Mobile Phone Videos [0.1806830971023738]
We present a mobile phone-based, privacy-preserving artificial intelligence (AI) system for classifying gait impairments.
The dataset consists of frontal and sagittal views of trained subjects simulating normal gait and six types of pathological gait.
Our system achieved 86.5% accuracy using combined frontal and sagittal views, with sagittal views generally outperforming frontal views except for specific gait patterns like Circumduction.
arXiv Detail & Related papers (2024-12-02T02:35:40Z) - MAPUNetR: A Hybrid Vision Transformer and U-Net Architecture for Efficient and Interpretable Medical Image Segmentation [0.0]
We introduce MAPUNetR, a novel architecture that synergizes the strengths of transformer models with the proven U-Net framework for medical image segmentation.
Our model addresses the resolution preservation challenge and incorporates attention maps highlighting segmented regions, increasing accuracy and interpretability.
Our experiments show that the model maintains stable performance and potential as a powerful tool for medical image segmentation in clinical practice.
arXiv Detail & Related papers (2024-10-29T16:52:57Z) - Segment Anything Model for Medical Image Segmentation: Current
Applications and Future Directions [8.216028136706948]
The recent introduction of the Segment Anything Model (SAM) signifies a noteworthy expansion of the prompt-driven paradigm into the domain of image segmentation.
We provide a comprehensive overview of recent endeavors aimed at extending the efficacy of SAM to medical image segmentation tasks.
We explore potential avenues for future research directions in SAM's role within medical image segmentation.
arXiv Detail & Related papers (2024-01-07T14:25:42Z) - Self-Prompting Large Vision Models for Few-Shot Medical Image
Segmentation [14.135249795318591]
We propose a novel perspective on self-prompting in medical vision applications.
We harness the embedding space of the Segment Anything Model to prompt itself through a simple yet effective linear pixel-wise classifier.
We achieve competitive results on multiple datasets.
arXiv Detail & Related papers (2023-08-15T08:20:07Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions.
Our challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures.
The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap.
arXiv Detail & Related papers (2020-03-23T14:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.