論文の概要: The Computational Learning of Construction Grammars: State of the Art and Prospective Roadmap
- arxiv url: http://arxiv.org/abs/2407.07606v1
- Date: Wed, 10 Jul 2024 12:45:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 16:41:55.750685
- Title: The Computational Learning of Construction Grammars: State of the Art and Prospective Roadmap
- Title(参考訳): 建設文法の計算学習の現状と展望
- Authors: Jonas Doumen, Veronica Juliana Schmalz, Katrien Beuls, Paul Van Eecke,
- Abstract要約: 本稿では,構成文法学習の計算モデルに関する技術の現状を文書化し,レビューする。
これまでに提案された様々な方法論と得られた成果を合成することを目的としている。
- 参考スコア(独自算出の注目度): 2.287415292857564
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper documents and reviews the state of the art concerning computational models of construction grammar learning. It brings together prior work on the computational learning of form-meaning pairings, which has so far been studied in several distinct areas of research. The goal of this paper is threefold. First of all, it aims to synthesise the variety of methodologies that have been proposed to date and the results that have been obtained. Second, it aims to identify those parts of the challenge that have been successfully tackled and reveal those that require further research. Finally, it aims to provide a roadmap which can help to boost and streamline future research efforts on the computational learning of large-scale, usage-based construction grammars.
- Abstract(参考訳): 本稿では,構成文法学習の計算モデルに関する現状を文書化し,レビューする。
これは、これまでいくつかの異なる研究領域で研究されてきた、フォーム意味のペアリングの計算学習に関する先行研究をまとめるものである。
この論文の目標は3倍です。
まず、これまで提案されてきた様々な方法論と得られた結果の合成を目的とする。
第2に、取り組みに成功した課題のこれらの部分を特定し、さらなる研究を必要とする課題を明らかにすることを目的としている。
最後に、大規模で使用法に基づく構成文法の計算学習における今後の研究活動の促進と合理化を支援するロードマップを提供することを目標としている。
関連論文リスト
- Frontiers of Deep Learning: From Novel Application to Real-World Deployment [3.3813152538225135]
本稿では,近年のディープラーニング研究の進展を示す2つの研究論文について報告する。
最初の論文では、一般的に言語モデルで使用される変換器ネットワークを適用して、合成開口レーダ画像の品質を改善した。
本稿では,ディープラーニングレコメンデーションシステムのコスト効率と高性能実装を実現するために,ストレージ内コンピューティング設計ソリューションを提案する。
論文 参考訳(メタデータ) (2024-07-19T15:11:55Z) - From Pixels to Insights: A Survey on Automatic Chart Understanding in the Era of Large Foundation Models [98.41645229835493]
グラフ形式のデータの可視化は、データ分析において重要な役割を担い、重要な洞察を提供し、情報的な意思決定を支援する。
大規模言語モデルのような大規模な基盤モデルは、様々な自然言語処理タスクに革命をもたらした。
本研究は,自然言語処理,コンピュータビジョン,データ解析の分野における研究者や実践者の包括的資源として機能する。
論文 参考訳(メタデータ) (2024-03-18T17:57:09Z) - Construction Grammar and Language Models [4.171555557592296]
近年のディープラーニングの進歩は、主にクローゼのようなタスクで訓練された強力なモデルを生み出している。
この章は、自然言語処理と構築文法の分野における研究者間のコラボレーションを促進することを目的としている。
論文 参考訳(メタデータ) (2023-08-25T11:37:56Z) - Recent Advances in Direct Speech-to-text Translation [58.692782919570845]
我々は、既存の研究成果を、モデリングの負担、データの不足、アプリケーション問題という3つの課題に基づいて分類する。
データ不足の課題に対して、最近の研究は、データ強化、事前学習、知識蒸留、多言語モデリングなど、多くの高度な技術を活用している。
我々は、リアルタイム、セグメンテーション、名前付きエンティティ、性別バイアス、コードスイッチングなど、アプリケーションの問題を分析して要約する。
論文 参考訳(メタデータ) (2023-06-20T16:14:27Z) - Algorithmic Ghost in the Research Shell: Large Language Models and
Academic Knowledge Creation in Management Research [0.0]
本稿では,学術知識創造における大規模言語モデルの役割について考察する。
これには、書き込み、編集、レビュー、データセットの作成、キュレーションが含まれる。
論文 参考訳(メタデータ) (2023-03-10T14:25:29Z) - Deep Learning Schema-based Event Extraction: Literature Review and
Current Trends [60.29289298349322]
ディープラーニングに基づくイベント抽出技術が研究ホットスポットとなっている。
本稿では,ディープラーニングモデルに焦点をあて,最先端のアプローチを見直し,そのギャップを埋める。
論文 参考訳(メタデータ) (2021-07-05T16:32:45Z) - Positioning yourself in the maze of Neural Text Generation: A
Task-Agnostic Survey [54.34370423151014]
本稿では, ストーリーテリング, 要約, 翻訳など, 世代ごとのタスクインパクトをリレーする手法の構成要素について検討する。
本稿では,学習パラダイム,事前学習,モデリングアプローチ,復号化,各分野における重要な課題について,命令的手法の抽象化を提案する。
論文 参考訳(メタデータ) (2020-10-14T17:54:42Z) - Towards Improved Model Design for Authorship Identification: A Survey on
Writing Style Understanding [30.642840676899734]
著者識別タスクは言語スタイルに大きく依存している。
手作りの機能セットに基づく従来の機械学習手法は、すでにパフォーマンスの限界に近づいている。
スタイル関連タスクにおける卓越した手法を概説し、それらの組み合わせがトップパフォーマンスモデルでどのように使われているかを分析する。
論文 参考訳(メタデータ) (2020-09-30T05:17:42Z) - A Survey on Text Classification: From Shallow to Deep Learning [83.47804123133719]
過去10年は、ディープラーニングが前例のない成功を収めたために、この分野の研究が急増している。
本稿では,1961年から2021年までの最先端のアプローチを見直し,そのギャップを埋める。
特徴抽出と分類に使用されるテキストとモデルに基づいて,テキスト分類のための分類を作成する。
論文 参考訳(メタデータ) (2020-08-02T00:09:03Z) - Explaining Relationships Between Scientific Documents [55.23390424044378]
本稿では,2つの学術文書間の関係を自然言語テキストを用いて記述する課題に対処する。
本稿では154K文書から622Kサンプルのデータセットを作成する。
論文 参考訳(メタデータ) (2020-02-02T03:54:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。