論文の概要: MARS: Mixture of Auto-Regressive Models for Fine-grained Text-to-image Synthesis
- arxiv url: http://arxiv.org/abs/2407.07614v2
- Date: Thu, 11 Jul 2024 11:05:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 12:07:17.698311
- Title: MARS: Mixture of Auto-Regressive Models for Fine-grained Text-to-image Synthesis
- Title(参考訳): MARS:微細テキスト・画像合成のための自己回帰モデルの混合
- Authors: Wanggui He, Siming Fu, Mushui Liu, Xierui Wang, Wenyi Xiao, Fangxun Shu, Yi Wang, Lei Zhang, Zhelun Yu, Haoyuan Li, Ziwei Huang, LeiLei Gan, Hao Jiang,
- Abstract要約: 特殊設計されたセマンティックビジョンランゲージ統合エキスパート(Semantic Vision-Language Integration Expert, SemVIE)を組み込んだ,T2I世代のための新しいフレームワークであるMARSを紹介する。
この革新的なコンポーネントは、言語情報と視覚情報を独立に処理し、ビジュアルコンポーネントを微調整しながらテキストコンポーネントを凍結することにより、事前訓練されたLCMを統合する。
MARSはSD1.5に必要なGPU日のうち9%しか必要としないが、様々なベンチマークで顕著な結果が得られる。
- 参考スコア(独自算出の注目度): 18.876109299162138
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Auto-regressive models have made significant progress in the realm of language generation, yet they do not perform on par with diffusion models in the domain of image synthesis. In this work, we introduce MARS, a novel framework for T2I generation that incorporates a specially designed Semantic Vision-Language Integration Expert (SemVIE). This innovative component integrates pre-trained LLMs by independently processing linguistic and visual information, freezing the textual component while fine-tuning the visual component. This methodology preserves the NLP capabilities of LLMs while imbuing them with exceptional visual understanding. Building upon the powerful base of the pre-trained Qwen-7B, MARS stands out with its bilingual generative capabilities corresponding to both English and Chinese language prompts and the capacity for joint image and text generation. The flexibility of this framework lends itself to migration towards any-to-any task adaptability. Furthermore, MARS employs a multi-stage training strategy that first establishes robust image-text alignment through complementary bidirectional tasks and subsequently concentrates on refining the T2I generation process, significantly augmenting text-image synchrony and the granularity of image details. Notably, MARS requires only 9% of the GPU days needed by SD1.5, yet it achieves remarkable results across a variety of benchmarks, illustrating the training efficiency and the potential for swift deployment in various applications.
- Abstract(参考訳): 自動回帰モデルは言語生成の領域において大きな進歩を遂げているが、画像合成の領域における拡散モデルと同等に機能しない。
本稿では,特殊設計されたセマンティックビジョン・ランゲージ統合エキスパート(Semantic Vision-Language Integration Expert, SemVIE)を組み込んだ,T2I世代のための新しいフレームワークであるMARSを紹介する。
この革新的なコンポーネントは、言語情報と視覚情報を独立に処理し、ビジュアルコンポーネントを微調整しながらテキストコンポーネントを凍結することにより、事前訓練されたLCMを統合する。
この手法は,LLMのNLP能力を保ちながら,例外的な視覚的理解を付与する。
事前訓練されたQwen-7Bの強力な基盤の上に構築されたMARSは、英語と中国語のプロンプトに対応するバイリンガル生成能力と、共同画像とテキスト生成能力で際立っている。
このフレームワークの柔軟性は、あらゆるタスク適応性へのマイグレーションを促します。
さらに、MARSは、まず相補的な双方向タスクを通じて堅牢な画像テキストアライメントを確立し、その後、T2I生成プロセスの精細化に集中し、テキスト画像の同期と画像詳細の粒度を著しく増大させるマルチステージトレーニング戦略を採用している。
特に、MARSはSD1.5に必要なGPU日のうち9%しか必要としないが、様々なベンチマークで顕著な結果が得られる。
関連論文リスト
- VEGA: Learning Interleaved Image-Text Comprehension in Vision-Language Large Models [76.94378391979228]
我々は、Interleaved Image-Text (IITC) と呼ばれる、より要求の多い新しいタスクを導入する。
この課題は、画像とテキストの両方の過剰な要素を識別・無視し、質問に正確に答えるためにモデルに挑戦する。
このタスクを支援するために、科学コンテンツに関するIITCタスクに適した新しいVEGAデータセットを構築し、サブタスクである画像テキストアソシエーション(ITA)を考案した。
論文 参考訳(メタデータ) (2024-06-14T17:59:40Z) - InternLM-XComposer2: Mastering Free-form Text-Image Composition and
Comprehension in Vision-Language Large Model [108.42241250772643]
InternLM-XComposer2は自由形式のテキスト画像合成と理解に優れた視覚言語モデルである。
このモデルは従来の視覚言語理解を超越し、多様な入力からインターリーブされたテキストイメージコンテンツを作成する。
InternLM2-7BをベースとしたInternLM-XComposer2の高画質長文マルチモーダルコンテンツにおける優位性を示す実験結果が得られた。
論文 参考訳(メタデータ) (2024-01-29T18:59:02Z) - Synchronizing Vision and Language: Bidirectional Token-Masking
AutoEncoder for Referring Image Segmentation [26.262887028563163]
Referring Image (RIS)は、自然言語で表現されたターゲットオブジェクトをピクセルレベルのシーン内でセグメントすることを目的としている。
マスク付きオートエンコーダ(MAE)に触発された新しい双方向トークンマスキングオートエンコーダ(BTMAE)を提案する。
BTMAEは、画像と言語の両方に欠けている機能をトークンレベルで再構築することで、画像から言語、言語へのイメージのコンテキストを学習する。
論文 参考訳(メタデータ) (2023-11-29T07:33:38Z) - Making LLaMA SEE and Draw with SEED Tokenizer [69.1083058794092]
大規模言語モデルにSEEとDrawの能力を持たせるための精巧な画像トークンであるSEEDを紹介します。
SEEDトークンを使うことで、LLMはオリジナルのトレーニングレシピの下でスケーラブルなマルチモーダルオートレグレスを実行することができる。
SEED-LLaMAはマルチターン・イン・コンテクスト・マルチモーダル生成のような合成創発的能力を示す。
論文 参考訳(メタデータ) (2023-10-02T14:03:02Z) - InternLM-XComposer: A Vision-Language Large Model for Advanced
Text-image Comprehension and Composition [111.65584066987036]
InternLM-XComposerは、高度な画像テキストの理解と合成を可能にする視覚言語による大規模モデルである。
シームレスに画像を統合するコヒーレントでコンテキスト的な記事を生成することができる。
画像がコンテンツを強化するテキスト内の領域をインテリジェントに識別し、最も適切な視覚的候補を自動的に挿入する。
論文 参考訳(メタデータ) (2023-09-26T17:58:20Z) - Planting a SEED of Vision in Large Language Model [73.17530130368053]
このSEEDは,大規模言語モデル(LLM)とSEEとDrawを同時に実現する,精巧な画像トークンである。
このバージョンのSEEDは、64のV100 GPUと5Mのパブリックな画像テキストペアを使用して、5.7日間でトレーニングされた。
論文 参考訳(メタデータ) (2023-07-16T13:41:39Z) - DSE-GAN: Dynamic Semantic Evolution Generative Adversarial Network for
Text-to-Image Generation [71.87682778102236]
本稿では,動的セマンティック進化GAN(DSE-GAN)を提案する。
DSE-GANは2つの広く使用されているベンチマークで7.48%と37.8%のFID改善を達成した。
論文 参考訳(メタデータ) (2022-09-03T06:13:26Z) - ERNIE-ViLG: Unified Generative Pre-training for Bidirectional
Vision-Language Generation [22.47279425592133]
ERNIE-ViLGは,双方向画像テキスト生成のための統合型事前学習フレームワークである。
テキスト・ツー・イメージ生成プロセスにおいて,視覚的シーケンス生成器と画像再構成器を協調的に学習するエンドツーエンド・トレーニング手法を提案する。
我々は,1億4500万(中国語)の画像テキストペアからなる大規模データセット上で,10ビリオンパラメータERNIE-ViLGモデルをトレーニングする。
論文 参考訳(メタデータ) (2021-12-31T03:53:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。