The Language of Weather: Social Media Reactions to Weather Accounting for Climatic and Linguistic Baselines
- URL: http://arxiv.org/abs/2407.07683v1
- Date: Wed, 10 Jul 2024 14:08:24 GMT
- Title: The Language of Weather: Social Media Reactions to Weather Accounting for Climatic and Linguistic Baselines
- Authors: James C. Young, Rudy Arthur, Hywel T. P. Williams,
- Abstract summary: By considering climate and linguistic baselines, we improve the accuracy of weather-related sentiment analysis.
Results highlight the importance of context-sensitive methods for better understanding public mood in response to weather.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study explores how different weather conditions influence public sentiment on social media, focusing on Twitter data from the UK. By considering climate and linguistic baselines, we improve the accuracy of weather-related sentiment analysis. Our findings show that emotional responses to weather are complex, influenced by combinations of weather variables and regional language differences. The results highlight the importance of context-sensitive methods for better understanding public mood in response to weather, which can enhance impact-based forecasting and risk communication in the context of climate change.
Related papers
- Indexing and Visualization of Climate Change Narratives Using BERT and Causal Extraction [2.7325857919669327]
We use two natural language processing methods, BERT (Bidirectional Representations from Transformers) and causal extraction, to analyze newspaper articles on climate change.
The novelty of the methodology could extract and quantify the causal relationships assumed by the newspaper's writers.
arXiv Detail & Related papers (2024-08-03T11:05:41Z) - WeatherQA: Can Multimodal Language Models Reason about Severe Weather? [45.43764278625153]
Severe convective weather events, such as hail, tornadoes, and thunderstorms, often occur quickly yet cause significant damage, costing billions of dollars every year.
This highlights the importance of forecasting severe weather threats hours in advance to better prepare meteorologists and residents in at-risk areas.
We introduce WeatherQA, the first multimodal dataset designed for machines to reason about complex combinations of weather parameters and predict severe weather in real-world scenarios.
arXiv Detail & Related papers (2024-06-17T05:23:18Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
We train a deep neural network to predict a phenological index from meteorological time series.
We find that this approach outperforms traditional process-based models.
arXiv Detail & Related papers (2024-01-08T15:29:23Z) - Understanding Opinions Towards Climate Change on Social Media [2.31449645503075]
We aim to understand how real world events influence the opinions of individuals towards climate change related topics on social media.
We extracted and analyzed a dataset of 13.6 millions tweets sent by 3.6 million users from 2006 to 2019.
Our work acts as a first step towards understanding the evolution of pro-climate change communities around COP events.
arXiv Detail & Related papers (2023-12-02T20:02:34Z) - ClimateNLP: Analyzing Public Sentiment Towards Climate Change Using
Natural Language Processing [0.0]
This paper employs natural language processing (NLP) techniques to analyze climate change discourse and quantify the sentiment of climate change-related tweets.
The objective is to discern the sentiment individuals express and uncover patterns in public opinion concerning climate change.
arXiv Detail & Related papers (2023-10-12T07:48:50Z) - News and Load: A Quantitative Exploration of Natural Language Processing
Applications for Forecasting Day-ahead Electricity System Demand [0.5432724320036955]
This study explores the link between electricity demand and more nuanced information about social events.
It is done using mature Natural Language Processing (NLP) and demand forecasting techniques.
The results indicate that day-ahead forecasts are improved by textual features such as word frequencies, public sentiments, topic distributions, and word embeddings.
arXiv Detail & Related papers (2023-01-18T13:55:08Z) - Climate Change & Computer Audition: A Call to Action and Overview on
Audio Intelligence to Help Save the Planet [98.97255654573662]
This work provides an overview of areas in which audio intelligence can contribute to overcome climate-related challenges.
We categorise potential computer audition applications according to the five elements of earth, water, air, fire, and aether.
arXiv Detail & Related papers (2022-03-10T13:32:31Z) - Trend and Thoughts: Understanding Climate Change Concern using Machine
Learning and Social Media Data [3.7384509727711923]
We constructed a massive climate change Twitter dataset and conducted comprehensive analysis using machine learning.
By conducting topic modeling and natural language processing, we show the relationship between the number of tweets about climate change and major climate events.
Our dataset was published on Kaggle and can be used in further research.
arXiv Detail & Related papers (2021-11-06T19:59:03Z) - Machine learning reveals how personalized climate communication can both
succeed and backfire [55.41644538483948]
We show that online advertisements increase some people's belief in climate change while resulting in decreased belief in others.
In particular, we show that the effect of the advertisements could change depending on people's age and ethnicity.
arXiv Detail & Related papers (2021-09-10T20:47:34Z) - Weather GAN: Multi-Domain Weather Translation Using Generative
Adversarial Networks [76.64158017926381]
A new task is proposed, namely, weather translation, which refers to transferring weather conditions of the image from one category to another.
We develop a multi-domain weather translation approach based on generative adversarial networks (GAN), denoted as Weather GAN.
Our approach suppresses the distortion and deformation caused by weather translation.
arXiv Detail & Related papers (2021-03-09T13:51:58Z) - Analyzing Sustainability Reports Using Natural Language Processing [68.8204255655161]
In recent years, companies have increasingly been aiming to both mitigate their environmental impact and adapt to the changing climate context.
This is reported via increasingly exhaustive reports, which cover many types of climate risks and exposures under the umbrella of Environmental, Social, and Governance (ESG)
We present this tool and the methodology that we used to develop it in the present article.
arXiv Detail & Related papers (2020-11-03T21:22:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.