論文の概要: Towards Human-Like Driving: Active Inference in Autonomous Vehicle Control
- arxiv url: http://arxiv.org/abs/2407.07684v1
- Date: Wed, 10 Jul 2024 14:08:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 16:22:15.940605
- Title: Towards Human-Like Driving: Active Inference in Autonomous Vehicle Control
- Title(参考訳): 人間ライクな運転に向けて:自律走行車制御におけるアクティブ推論
- Authors: Elahe Delavari, John Moore, Junho Hong, Jaerock Kwon,
- Abstract要約: 本稿では,アクティブ推論の適用を通じて,自律走行車(AV)制御への新たなアプローチを提案する。
アクティブ推論(英: Active Inference)は、脳を予測機械として概念化する神経科学に由来する理論である。
提案手法は,深層学習と能動推論を統合してAVの側方制御を制御し,シミュレーション都市環境下で車線追従操作を行う。
- 参考スコア(独自算出の注目度): 0.5437298646956507
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel approach to Autonomous Vehicle (AV) control through the application of active inference, a theory derived from neuroscience that conceptualizes the brain as a predictive machine. Traditional autonomous driving systems rely heavily on Modular Pipelines, Imitation Learning, or Reinforcement Learning, each with inherent limitations in adaptability, generalization, and computational efficiency. Active inference addresses these challenges by minimizing prediction error (termed "surprise") through a dynamic model that balances perception and action. Our method integrates active inference with deep learning to manage lateral control in AVs, enabling them to perform lane following maneuvers within a simulated urban environment. We demonstrate that our model, despite its simplicity, effectively learns and generalizes from limited data without extensive retraining, significantly reducing computational demands. The proposed approach not only enhances the adaptability and performance of AVs in dynamic scenarios but also aligns closely with human-like driving behavior, leveraging a generative model to predict and adapt to environmental changes. Results from extensive experiments in the CARLA simulator show promising outcomes, outperforming traditional methods in terms of adaptability and efficiency, thereby advancing the potential of active inference in real-world autonomous driving applications.
- Abstract(参考訳): 本稿では,脳を予測機械として概念化する神経科学から派生した理論であるアクティブ推論を応用した,自律走行(AV)制御への新たなアプローチを提案する。
従来の自律運転システムは、適応性、一般化、計算効率に固有の制限があるモジュールパイプライン、模倣学習、強化学習に大きく依存している。
アクティブ推論は、知覚と行動のバランスをとる動的なモデルを通じて予測誤差(「サプライズ」と呼ばれる)を最小限にすることでこれらの課題に対処する。
提案手法は,深層学習と能動推論を統合してAVの側方制御を制御し,シミュレーション都市環境下での車線追従操作を可能にする。
我々は,その単純さに拘わらず,広範な再トレーニングを伴わずに,限られたデータから効果的に学習し,一般化し,計算要求を大幅に低減することを示した。
提案手法は、動的シナリオにおけるAVの適応性と性能を高めるだけでなく、環境変化を予測・適応するための生成モデルを利用して、人間のような運転行動と密接に一致させる。
CARLAシミュレーターにおける広範な実験の結果、適応性と効率の点で従来の手法よりも優れており、現実の自律運転アプリケーションにおけるアクティブな推論の可能性を高めている。
関連論文リスト
- RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - Sim-to-Real Transfer of Adaptive Control Parameters for AUV
Stabilization under Current Disturbance [1.099532646524593]
本稿では,最大エントロピー深層強化学習フレームワークを古典的なモデルベース制御アーキテクチャと組み合わせ,適応制御系を定式化する新しい手法を提案する。
本フレームワークでは,バイオインスパイアされた体験再生機構,拡張されたドメインランダム化手法,物理プラットフォーム上で実行される評価プロトコルなどを含むSim-to-Real転送戦略を導入する。
実験により,AUVの準最適モデルから有能なポリシを効果的に学習し,実車への移動時の制御性能を3倍に向上することを示した。
論文 参考訳(メタデータ) (2023-10-17T08:46:56Z) - Learning Terrain-Aware Kinodynamic Model for Autonomous Off-Road Rally
Driving With Model Predictive Path Integral Control [4.23755398158039]
本稿では,固有受容情報と外部受容情報の両方に基づいて,地形を考慮したキノダイナミクスモデルを学習する手法を提案する。
提案モデルでは、6自由度運動の信頼性予測が生成され、接触相互作用を推定することもできる。
シミュレーションされたオフロードトラック実験により提案手法の有効性を実証し,提案手法がベースラインより優れていることを示す。
論文 参考訳(メタデータ) (2023-05-01T06:09:49Z) - Model-Based Reinforcement Learning with Isolated Imaginations [61.67183143982074]
モデルに基づく強化学習手法であるIso-Dream++を提案する。
我々は、切り離された潜在的想像力に基づいて政策最適化を行う。
これにより、野生の混合力学源を孤立させることで、長い水平振動子制御タスクの恩恵を受けることができる。
論文 参考訳(メタデータ) (2023-03-27T02:55:56Z) - Active Learning of Discrete-Time Dynamics for Uncertainty-Aware Model
Predictive Control [49.60520501097199]
本稿では,非線形ロボットシステムの力学を積極的にモデル化する自己教師型学習手法を提案する。
我々のアプローチは、目に見えない飛行条件に一貫して適応することで、高いレジリエンスと一般化能力を示す。
論文 参考訳(メタデータ) (2022-10-23T00:45:05Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Isolating and Leveraging Controllable and Noncontrollable Visual
Dynamics in World Models [65.97707691164558]
Iso-DreamはDream-to-Controlフレームワークを2つの側面で改善する。
まず、逆動力学を最適化することにより、世界モデルに制御可能で制御不能な情報源を学習させることを奨励する。
第2に、エージェントの挙動を世界モデルの切り離された潜在的想像力に最適化する。
論文 参考訳(メタデータ) (2022-05-27T08:07:39Z) - Uncertainty-Aware Model-Based Reinforcement Learning with Application to
Autonomous Driving [2.3303341607459687]
本稿では,新しい不確実性を考慮したモデルに基づく強化学習フレームワークを提案する。
このフレームワークは適応的トランケーションアプローチに基づいて開発され、エージェントと環境モデルの間の仮想相互作用を提供する。
開発したアルゴリズムは、エンド・ツー・エンドの自動運転車制御タスクで実装され、様々な運転シナリオにおける最先端の手法と比較される。
論文 参考訳(メタデータ) (2021-06-23T06:55:14Z) - Learning to drive from a world on rails [78.28647825246472]
モデルベースアプローチによって,事前記録された運転ログからインタラクティブな視覚ベースの運転方針を学習する。
世界の前方モデルは、あらゆる潜在的な運転経路の結果を予測する運転政策を監督する。
提案手法は,carla リーダボードにまずランク付けし,40 倍少ないデータを用いて25%高い運転スコアを得た。
論文 参考訳(メタデータ) (2021-05-03T05:55:30Z) - Learning hierarchical behavior and motion planning for autonomous
driving [32.78069835190924]
本稿では,階層的行動計画(HBMP)を導入し,学習ベースソリューションの動作を明示的にモデル化する。
我々は、古典的なサンプリングベースのモーションプランナを統合することで、HBMP問題を変換する。
さらに,シミュレーションプラットフォームと実環境をまたいだ入力感覚データの共有可能な表現を提案する。
論文 参考訳(メタデータ) (2020-05-08T05:34:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。