論文の概要: Split Conformal Prediction under Data Contamination
- arxiv url: http://arxiv.org/abs/2407.07700v1
- Date: Wed, 10 Jul 2024 14:33:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 16:22:15.925213
- Title: Split Conformal Prediction under Data Contamination
- Title(参考訳): データ汚染下における分断等角予測
- Authors: Jase Clarkson, Wenkai Xu, Mihai Cucuringu, Gesine Reinert,
- Abstract要約: データ汚染環境における分割共形予測の堅牢性について検討する。
構築した集合のカバレッジと効率に及ぼす劣化したデータの影響を定量化する。
本稿では,汚染ロバスト・コンフォーマル予測(Contamination Robust Conformal Prediction)と呼ぶ分類設定の調整を提案する。
- 参考スコア(独自算出の注目度): 14.23965125128232
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conformal prediction is a non-parametric technique for constructing prediction intervals or sets from arbitrary predictive models under the assumption that the data is exchangeable. It is popular as it comes with theoretical guarantees on the marginal coverage of the prediction sets and the split conformal prediction variant has a very low computational cost compared to model training. We study the robustness of split conformal prediction in a data contamination setting, where we assume a small fraction of the calibration scores are drawn from a different distribution than the bulk. We quantify the impact of the corrupted data on the coverage and efficiency of the constructed sets when evaluated on "clean" test points, and verify our results with numerical experiments. Moreover, we propose an adjustment in the classification setting which we call Contamination Robust Conformal Prediction, and verify the efficacy of our approach using both synthetic and real datasets.
- Abstract(参考訳): コンフォーマル予測(Conformal prediction)とは、データ交換可能な仮定の下で任意の予測モデルから予測間隔や集合を構築するための非パラメトリック手法である。
予測セットの限界被覆に関する理論的保証が伴い、分割共形予測変種はモデルトレーニングと比較して計算コストが極めて低いことから人気がある。
データ汚染条件下での分割共形予測のロバスト性について検討し、キャリブレーションスコアのごく一部がバルクと異なる分布から引き出されると仮定する。
クリーンな」テストポイントで評価した場合, 破損したデータの影響を定量的に評価し, 数値実験による検証を行った。
さらに,汚染ロバスト・コンフォーマル予測(Contamination Robust Conformal Prediction)と呼ぶ分類設定の調整を提案し,合成データと実データの両方を用いて本手法の有効性を検証する。
関連論文リスト
- Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
コンフォーマル予測は、モデルに依存しない、分布のない不確実性定量化を提供する。
しかし、敵が訓練データと校正データを操作した場合の毒殺攻撃では、共形予測は信頼性が低い。
信頼性予測セット (RPS): 汚染下での信頼性保証を証明可能な共形予測セットを構築するための最初の効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-13T15:37:11Z) - Self-Calibrating Conformal Prediction [16.606421967131524]
本稿では,これらの予測に対して有限サンプル妥当性条件付き予測間隔とともに,校正点予測を実現するための自己校正等式予測を提案する。
本手法は,モデルキャリブレーションによりキャリブレーション間隔効率を向上し,特徴条件の妥当性に対して実用的な代替手段を提供する。
論文 参考訳(メタデータ) (2024-02-11T21:12:21Z) - Conformal Prediction with Partially Labeled Data [3.895044919159418]
本稿では,定値トレーニングおよび校正データに適用可能な共形予測手法の一般化を提案する。
提案手法の有効性を実証し,本手法が自然ベースラインと好適に比較した実験的検討を行った。
論文 参考訳(メタデータ) (2023-06-01T23:10:15Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
我々は、既存の予測モデルの上に自己教師付きプレテキストタスクを持つ補助モデルを訓練し、自己教師付きエラーを付加的な特徴として用いて、非整合性スコアを推定する。
合成データと実データの両方を用いて、効率(幅)、欠陥、共形予測間隔の超過といった付加情報の利点を実証的に実証する。
論文 参考訳(メタデータ) (2023-02-23T18:57:14Z) - Distribution-Free Finite-Sample Guarantees and Split Conformal
Prediction [0.0]
分割共形予測は、最小分布自由仮定の下で有限サンプル保証を得るための有望な道を表す。
1940年代に開発された分割共形予測と古典的寛容予測との関連性を強調した。
論文 参考訳(メタデータ) (2022-10-26T14:12:24Z) - Robust Flow-based Conformal Inference (FCI) with Statistical Guarantee [4.821312633849745]
本研究では,予測集合の構築や,複雑なデータや高次元データに対するアウトレイラの推測など,一連の共形推論手法を開発する。
ベンチマークデータセットを用いて,ロバストなフローベース共形推論手法の評価を行った。
論文 参考訳(メタデータ) (2022-05-22T04:17:30Z) - Conformal prediction for the design problem [72.14982816083297]
機械学習の現実的な展開では、次にテストすべきデータを選択するために予測アルゴリズムを使用します。
このような設定では、トレーニングデータとテストデータの間には、異なるタイプの分散シフトがある。
このような環境で予測の不確実性を定量化する手法を提案する。
論文 参考訳(メタデータ) (2022-02-08T02:59:12Z) - Test-time Collective Prediction [73.74982509510961]
マシンラーニングの複数のパーティは、将来のテストポイントを共同で予測したいと考えています。
エージェントは、すべてのエージェントの集合の集合的な専門知識の恩恵を受けることを望んでいるが、データやモデルパラメータを解放する意思はないかもしれない。
我々は、各エージェントの事前学習モデルを利用して、テスト時に集合的な予測を行う分散型メカニズムを探索する。
論文 参考訳(メタデータ) (2021-06-22T18:29:58Z) - Private Prediction Sets [72.75711776601973]
機械学習システムは、個人のプライバシーの確実な定量化と保護を必要とする。
これら2つのデシラタを共同で扱う枠組みを提案する。
本手法を大規模コンピュータビジョンデータセット上で評価する。
論文 参考訳(メタデータ) (2021-02-11T18:59:11Z) - Balance-Subsampled Stable Prediction [55.13512328954456]
本稿では, 分数分解設計理論に基づく新しいバランスサブサンプル安定予測法を提案する。
設計理論解析により,提案手法は分布シフトによって誘導される予測器間の共起効果を低減できることを示した。
合成および実世界の両方のデータセットに関する数値実験により、BSSPアルゴリズムは未知のテストデータ間で安定した予測を行うためのベースライン法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2020-06-08T07:01:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。