論文の概要: SvANet: A Scale-variant Attention-based Network for Small Medical Object Segmentation
- arxiv url: http://arxiv.org/abs/2407.07720v2
- Date: Wed, 24 Jul 2024 02:55:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-25 18:22:12.085072
- Title: SvANet: A Scale-variant Attention-based Network for Small Medical Object Segmentation
- Title(参考訳): SvANet:小さな医療用オブジェクトセグメンテーションのためのスケール可変アテンションベースネットワーク
- Authors: Wei Dai,
- Abstract要約: 軽度の感染部位を有する軽度の症候群は、異常な警告であり、疾患の早期診断の最前線である。
畳み込みニューラルネットワーク(CNN)のような深層学習アルゴリズムは、自然または医学的対象のセグメンテーションに使用されている。
医用画像における小型物体分割を高精度に行うための,新しいスケール可変アテンションベースネットワーク(SvANet)を提案する。
- 参考スコア(独自算出の注目度): 3.685972342383005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early detection and accurate diagnosis can predict the risk of malignant disease transformation, thereby increasing the probability of effective treatment. A mild syndrome with small infected regions is an ominous warning and is foremost in the early diagnosis of diseases. Deep learning algorithms, such as convolutional neural networks (CNNs), have been used to segment natural or medical objects, showing promising results. However, analyzing medical objects of small areas in images remains a challenge due to information losses and compression defects caused by convolution and pooling operations in CNNs. These losses and defects become increasingly significant as the network deepens, particularly for small medical objects. To address these challenges, we propose a novel scale-variant attention-based network (SvANet) for accurate small-scale object segmentation in medical images. The SvANet consists of Monte Carlo attention, scale-variant attention, and vision transformer, which incorporates cross-scale features and alleviates compression artifacts for enhancing the discrimination of small medical objects. Quantitative experimental results demonstrate the superior performance of SvANet, achieving 96.12%, 96.11%, 89.79%, 84.15%, 80.25%, 73.05%, and 72.58% in mean Dice coefficient for segmenting kidney tumors, skin lesions, hepatic tumors, polyps, surgical excision cells, retinal vasculatures, and sperms, which occupy less than 1% of the image areas in KiTS23, ISIC 2018, ATLAS, PolypGen, TissueNet, FIVES, and SpermHealth datasets, respectively.
- Abstract(参考訳): 早期発見と正確な診断は悪性疾患の再発のリスクを予測し、効果的治療の確率を高めることができる。
軽度の感染部位を有する軽度の症候群は、異常な警告であり、疾患の早期診断の最前線である。
畳み込みニューラルネットワーク(CNN)のようなディープラーニングアルゴリズムは、自然または医学的なオブジェクトを分割するために使われ、有望な結果を示している。
しかし、画像内の小さな領域の医療対象を分析することは、CNNにおける畳み込みやプール操作によって引き起こされる情報損失と圧縮欠陥のため、依然として課題である。
これらの損失と欠陥は、ネットワークが深まるにつれて、特に小さな医療オブジェクトにとって、ますます顕著になる。
これらの課題に対処するために,医用画像における小型物体分割を正確に行うための,新しいスケール可変アテンションベースネットワーク(SvANet)を提案する。
SvANetはモンテカルロ・アテンション、スケール可変アテンション、ビジョン・トランスフォーマーで構成されており、クロススケールな特徴を取り入れ、小さな医療オブジェクトの識別を強化するために圧縮アーティファクトを緩和している。
定量的実験の結果、SvANetは96.12%、96.11%、89.79%、84.15%、80.25%、73.05%、および72.58%を達成し、それぞれKiTS23、ISIC 2018、ATLAS、PolypGen、TioNet、FIVES、SpermHealthの各データセットの画像領域の1%未満を占める腎臓腫瘍、皮膚病変、肝腫瘍、ポリープ、外科切除細胞、網膜血管、精子の分画係数を推定した。
関連論文リスト
- Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
特にGemini-Vision-Series (Gemini) と GPT-4-Series (GPT-4) は、コンピュータビジョンのための人工知能のパラダイムシフトを象徴している。
本研究は,14の医用画像データセットを対象に,Gemini,GPT-4,および4つの一般的な大規模モデルの性能評価を行った。
論文 参考訳(メタデータ) (2024-07-08T09:08:42Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - Gravity Network for end-to-end small lesion detection [50.38534263407915]
本稿では,医療画像の小さな病変を特異的に検出するワンステージエンド・ツー・エンド検出器を提案する。
小さな病変の正確な局在化は、その外観と、それらが見つかる様々な背景によって困難を呈する。
この新たなアーキテクチャをGravityNetと呼び、新しいアンカーを重力点と呼ぶ。
論文 参考訳(メタデータ) (2023-09-22T14:02:22Z) - Channel Attention Separable Convolution Network for Skin Lesion
Segmentation [2.8636163472272576]
皮膚病変分割のための新しいネットワークであるChannel Attention Separable Convolution Network (CASCN)を提案する。
CASCNは、Dice係数が0.9461で精度が0.9645であるPH2データセットの最先端性能を達成する。
論文 参考訳(メタデータ) (2023-09-03T04:20:28Z) - Enhancing Medical Image Segmentation: Optimizing Cross-Entropy Weights
and Post-Processing with Autoencoders [10.59457299493644]
本稿では,医用画像セグメンテーションに適した深層学習手法を提案する。
提案手法は,U-Netでは平均12.26%,U-Net++では12.04%,皮膚筋炎データセットではResNetファミリーのエンコーダでは平均12.26%,最先端技術では12.04%に優れていた。
論文 参考訳(メタデータ) (2023-08-21T06:09:00Z) - Segmentation of Lungs COVID Infected Regions by Attention Mechanism and
Synthetic Data [10.457311689444769]
本研究は,感染した肺領域をCT画像に分割する手法を提案する。
注意機構を備えた畳み込みニューラルネットワークを用いて、複雑なパターンを持つ感染領域を検出する。
生成敵対ネットワークは、利用可能な小さなデータセットのデータの増大及び拡張のための合成画像を生成する。
論文 参考訳(メタデータ) (2021-08-19T20:15:47Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - Detecting Scatteredly-Distributed, Small, andCritically Important
Objects in 3D OncologyImaging via Decision Stratification [23.075722503902714]
本研究は腫瘍学的に重要なリンパ節(または不審な癌転移)の検出と分節に焦点を当てた。
我々はOSLNを腫瘍近位・腫瘍遠位分類に分割する分断型決定階層化手法を提案する。
局所的な3D画像パッチから得られた特徴と高次病変特性を組み合わせた新しいグローバルローカルネットワーク(GLNet)を提案する。
論文 参考訳(メタデータ) (2020-05-27T23:12:11Z) - ElixirNet: Relation-aware Network Architecture Adaptation for Medical
Lesion Detection [90.13718478362337]
本稿では,1)TruncatedRPNが正負値と負値のバランスをとること,2)Auto-lesion Blockが自動的に医療画像にカスタマイズされ,地域提案間の関係認識操作が組み込まれること,3)Relation Transferモジュールが意味的関係を組み込むこと,の3つのコンポーネントを含む新しいElixirNetを紹介した。
DeepLesionとKits19の実験では、ElixirNetの有効性が証明され、パラメータが少なくてFPNよりも感度と精度が向上した。
論文 参考訳(メタデータ) (2020-03-03T05:29:49Z) - Weakly-Supervised Lesion Segmentation on CT Scans using Co-Segmentation [18.58056402884405]
CTスキャンにおける病変分割は,病変・腫瘍の進展を正確に観察するための重要なステップである。
現在の慣行は、固形腫瘍の反応評価基準と呼ばれる不正確な代用に依存している。
本稿では,畳み込みニューラルネットワークを用いた弱教師付き病変分割法を提案する。
論文 参考訳(メタデータ) (2020-01-23T15:15:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。