論文の概要: LSM: A Comprehensive Metric for Assessing the Safety of Lane Detection Systems in Autonomous Driving
- arxiv url: http://arxiv.org/abs/2407.07740v1
- Date: Wed, 10 Jul 2024 15:11:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 16:12:31.340470
- Title: LSM: A Comprehensive Metric for Assessing the Safety of Lane Detection Systems in Autonomous Driving
- Title(参考訳): LSM: 自動運転における車線検出システムの安全性評価のための総合指標
- Authors: Jörg Gamerdinger, Sven Teufel, Stephan Amann, Georg Volk, Oliver Bringmann,
- Abstract要約: 本研究では,車線検出システムの安全性を評価するため,車線安全基準(LSM)を提案する。
道路タイプや道路幅を考慮したシーンのセマンティクスなどの付加的要因を車線検出の評価に考慮すべきである。
我々は,異なるレーン検出手法を用いて,様々な仮想シナリオにおけるオフライン安全基準を評価し,最先端のパフォーマンス指標と比較した。
- 参考スコア(独自算出の注目度): 0.5326090003728084
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Comprehensive perception of the vehicle's environment and correct interpretation of the environment are crucial for the safe operation of autonomous vehicles. The perception of surrounding objects is the main component for further tasks such as trajectory planning. However, safe trajectory planning requires not only object detection, but also the detection of drivable areas and lane corridors. While first approaches consider an advanced safety evaluation of object detection, the evaluation of lane detection still lacks sufficient safety metrics. Similar to the safety metrics for object detection, additional factors such as the semantics of the scene with road type and road width, the detection range as well as the potential causes of missing detections, incorporated by vehicle speed, should be considered for the evaluation of lane detection. Therefore, we propose the Lane Safety Metric (LSM), which takes these factors into account and allows to evaluate the safety of lane detection systems by determining an easily interpretable safety score. We evaluate our offline safety metric on various virtual scenarios using different lane detection approaches and compare it with state-of-the-art performance metrics.
- Abstract(参考訳): 自動車の環境の総合的な認識と環境の正しい解釈は、自動運転車の安全な運転に不可欠である。
周囲の物体の知覚は、軌道計画のような更なるタスクの主要な構成要素である。
しかし、安全な軌道計画には、物体の検出だけでなく、乾燥可能な地域や車線回廊の検出も必要である。
最初のアプローチでは、オブジェクト検出の高度な安全性評価が検討されているが、レーン検出の評価には十分な安全性指標が欠けている。
物体検出の安全性指標と同様に、車線検出の評価には、道路タイプや道路幅のシーンのセマンティクス、検出範囲、車両速度に組み込まれていない検出の潜在的な原因などの追加要因が考慮されるべきである。
そこで本稿では,これらの要因を考慮し,容易に解釈可能な安全性スコアを決定することにより,車線検出システムの安全性を評価することのできる車線安全基準(LSM)を提案する。
我々は,異なるレーン検出手法を用いて,様々な仮想シナリオにおけるオフライン安全基準を評価し,最先端のパフォーマンス指標と比較した。
関連論文リスト
- OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
軌道予測はコンピュータビジョンと自律運転の基本である。
この分野における既存のアプローチは、しばしば正確で完全な観測データを仮定する。
本稿では,視覚的位置決め技術を利用した視線外軌道予測手法を提案する。
論文 参考訳(メタデータ) (2024-04-02T18:30:29Z) - A Flow-based Credibility Metric for Safety-critical Pedestrian Detection [16.663568842153065]
自動走行(AD)における安全の重要性
標準評価スキームは、十分な検出性能を議論するために安全に依存しない指標を利用する。
本稿では,歩行者拘束箱を対象とした新しい信頼性指標であるc-flowを提案する。
論文 参考訳(メタデータ) (2024-02-12T13:30:34Z) - A Safety-Adapted Loss for Pedestrian Detection in Automated Driving [13.676179470606844]
安全クリティカルなドメインでは、オブジェクト検出器によるエラーは歩行者や他の脆弱な道路利用者を危険にさらす可能性がある。
本稿では,トレーニング中の歩行者あたりの臨界点の推定値を活用する安全意識の損失変動を提案する。
論文 参考訳(メタデータ) (2024-02-05T13:16:38Z) - DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
複数物体追跡(MOT)は、自律運転における知覚システムの基本的構成要素である。
運転システムの安全性の追求にもかかわらず、テスト時間条件における領域シフトに対するMOT適応問題に対する解決策は提案されていない。
我々はMOTの総合的なテスト時間適応フレームワークであるDARTHを紹介する。
論文 参考訳(メタデータ) (2023-10-03T10:10:42Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
本稿では,異なるAVの行動のリスクを評価するためのデータ駆動型フレームワークを提案する。
本稿では,衝突を引き起こす可能性のある名目行動から最小限の偏差を示す,対実的安全マージンの概念を提案する。
論文 参考訳(メタデータ) (2023-08-02T09:48:08Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - Evaluating Object (mis)Detection from a Safety and Reliability
Perspective: Discussion and Measures [1.8492669447784602]
本稿では,最も危険で運転決定に影響を及ぼす可能性が最も高い物体の正確な識別に報いる新しい物体検出手法を提案する。
我々は、最近の自律走行データセットnuScenesにモデルを適用し、9つの物体検出器を比較した。
その結果、いくつかの環境では、安全性と信頼性に重点を置いている場合、nuScenesランキングでベストに機能するオブジェクト検出器は好ましくないことが判明した。
論文 参考訳(メタデータ) (2022-03-04T09:31:20Z) - Network-level Safety Metrics for Overall Traffic Safety Assessment: A
Case Study [7.8191100993403495]
本稿では,道路インフラストラクチャセンサによる画像の処理による交通流の安全性評価のための,ネットワークレベルの新しい安全性指標について述べる。
安全性指標とクラッシュデータの統合解析により,代表的なネットワークレベルの安全性指標とクラッシュ頻度との洞察力のある時間的および空間的相関が明らかになった。
論文 参考訳(メタデータ) (2022-01-27T19:07:08Z) - CertainNet: Sampling-free Uncertainty Estimation for Object Detection [65.28989536741658]
ニューラルネットワークの不確実性を推定することは、安全クリティカルな設定において基本的な役割を果たす。
本研究では,オブジェクト検出のための新しいサンプリング不要不確実性推定法を提案する。
私たちはそれをCertainNetと呼び、各出力信号に対して、オブジェクト性、クラス、位置、サイズという、別の不確実性を提供するのは、これが初めてです。
論文 参考訳(メタデータ) (2021-10-04T17:59:31Z) - Analyzing vehicle pedestrian interactions combining data cube structure
and predictive collision risk estimation model [5.73658856166614]
本研究では,フィールドと集中型プロセスを組み合わせた歩行者安全システムについて紹介する。
本システムは,現場における今後のリスクを直ちに警告し,実際の衝突のない道路の安全レベルを評価することにより,危険頻繁なエリアの安全性を向上させることができる。
論文 参考訳(メタデータ) (2021-07-26T23:00:56Z) - Towards robust sensing for Autonomous Vehicles: An adversarial
perspective [82.83630604517249]
結果として得られる決定が摂動に対して堅牢であることは、最も重要なことです。
敵対的摂動は、意図的に環境や感覚測定の修正を施したものである。
より安全なシステムの構築とデプロイには,センサーシステムの脆弱性を慎重に評価する必要がある。
論文 参考訳(メタデータ) (2020-07-14T05:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。